A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A 128-Channel FPGA-Based Real-Time Spike-Sorting Bidirectional Closed-Loop Neural Interface System. | LitMetric

A multichannel neural interface system is an important tool for various types of neuroscientific studies. For the electrical interface with a biological system, high-precision high-speed data recording and various types of stimulation capability are required. In addition, real-time signal processing is an important feature in the implementation of a real-time closed-loop system without unwanted substantial delay for feedback stimulation. Online spike sorting, the process of assigning neural spikes to an identified group of neurons or clusters, is a necessary step to make a closed-loop path in real time, but massive memory-space requirements commonly limit hardware implementations. Here, we present a 128-channel field-programmable gate array (FPGA)-based real-time closed-loop bidirectional neural interface system. The system supports 128 channels for simultaneous signal recording and eight selectable channels for stimulation. A modular 64-channel analog front-end (AFE) provides scalability and a parameterized specification of the AFE supports the recording of various electrophysiological signal types with 1.59 ± 0.76 root-mean-square noise. The stimulator supports both voltage-controlled and current-controlled arbitrarily shaped waveforms with the programmable amplitude and duration of pulse. An empirical algorithm for online real-time spike sorting is implemented in an FPGA. The spike-sorting is performed by template matching, and templates are created by an online real-time unsupervised learning process. A memory saving technique, called dynamic cache organizing, is proposed to reduce the memory requirement down to 6 kbit per channel and modular implementation improves the scalability for further extensions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2017.2697415DOI Listing

Publication Analysis

Top Keywords

neural interface
12
interface system
12
fpga-based real-time
8
real-time closed-loop
8
spike sorting
8
online real-time
8
real-time
6
system
6
128-channel fpga-based
4
real-time spike-sorting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!