Chemically induced skin sensitization is a complex immunological disease with a profound impact on quality of life and working ability. Despite some progress in developing alternative methods for assessing the skin sensitization potential of chemical substances, there is no in vitro test that correlates well with human data. Computational QSAR models provide a rapid screening approach and contribute valuable information for the assessment of chemical toxicity. We describe the development of a freely accessible web-based and mobile application for the identification of potential skin sensitizers. The application is based on previously developed binary QSAR models of skin sensitization potential from human (109 compounds) and murine local lymph node assay (LLNA, 515 compounds) data with good external correct classification rate (0.70-0.81 and 0.72-0.84, respectively). We also included a multiclass skin sensitization potency model based on LLNA data (accuracy ranging between 0.73 and 0.76). When a user evaluates a compound in the web app, the outputs are (i) binary predictions of human and murine skin sensitization potential; (ii) multiclass prediction of murine skin sensitization; and (iii) probability maps illustrating the predicted contribution of chemical fragments. The app is the first tool available that incorporates quantitative structure-activity relationship (QSAR) models based on human data as well as multiclass models for LLNA. The Pred-Skin web app version 1.0 is freely available for the web, iOS, and Android (in development) at the LabMol web portal ( http://labmol.com.br/predskin/ ), in the Apple Store, and on Google Play, respectively. We will continuously update the app as new skin sensitization data and respective models become available.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.7b00194DOI Listing

Publication Analysis

Top Keywords

skin sensitization
32
sensitization potential
12
qsar models
12
skin
9
sensitization
8
human data
8
web app
8
murine skin
8
web
5
data
5

Similar Publications

Atopic dermatitis (AD) is a common inflammatory skin disorder characterised by hypersensitivity to allergens, eczematous lesions and pruritus. The aim of this study was to comprehensively characterise a murine model of dermatitis and assess the similarity with the human disease, as well as to profile clinically relevant AD therapies. Four repeated topical administrations of oxazolone in the auricular skin of sensitised mice induced morphological features compatible with AD, including redness and swelling, as well as histological changes typical of spongiotic (eczematous) dermatitis and increased plasmatic IgE.

View Article and Find Full Text PDF

Novel Diagnostics in Food Allergy.

J Allergy Clin Immunol

December 2024

Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom. Electronic address:

Food allergy is increasing in prevalence, and poses significant challenges for individuals and their families, adversely impacting their quality of life. Misdiagnosis can lead to unnecessary dietary and social limitations, and increased food allergy risk, while failure to diagnose may result in life-threatening anaphylaxis. Therefore, a precise diagnosis is of the utmost importance; however, barriers exist at every stage of the diagnostic process.

View Article and Find Full Text PDF

Hymenoptera venom allergy in children.

Ital J Pediatr

December 2024

Department of Health Sciences, University of Florence, Florence, 50139, Italy.

From a taxonomic point of view, Hymenoptera are subclassified into families: Apidae, including honeybees (Apis mellifera) and bumblebees (Bombus), and Vespidae, which, in turn, are divided into the subfamilies of Vespinae (wasps, including hornets, vespules, dolichovespules) and Polistinae (paper wasp). Hypersensitivity to Hymenoptera venom can be linked to immunological (IgE-mediated or non-IgE-mediated) and non-immunological mechanisms. Reactions are classified into local reactions, large local reactions, systemic reactions, toxic reactions, and unusual reactions.

View Article and Find Full Text PDF

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of NCIMB 41028 as a technological additive to improve ensiling of fresh plant material. The additive is intended for use in all fresh material for all animal species at a proposed minimum concentration of 1 × 10 colony forming units (CFU)/kg fresh plant material. The bacterial species is considered by EFSA to be suitable for the qualified presumption of safety approach to safety assessment.

View Article and Find Full Text PDF

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of an essential oil from the leaves of L. (sage oil) when used as a sensory additive in feed and in water for drinking for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that sage oil is considered safe up to the maximum proposed use levels in complete feed of 20 mg/kg for ornamental fish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!