Trifluoroacetate (TFA) is a strong anion byproduct of solid-phase peptide synthesis. Fourier transform infrared (FT-IR) spectroscopy can be used to ascertain the presence of this excipient in peptide samples for quality assessment. TFA absorbs as a strong sharp peak (1675 cm) within the amide I' band of the spectral region. A peptide sample and the TFA excipient can be studied simultaneously by FT-IR and 2D IR correlation spectroscopies. In addition, these techniques are able to determine the effect of TFA on the stability of the peptide. Herein, we describe the spectroscopic characterization of the GXXG loop peptide (GXXGlp), which is present in KH domain containing proteins. The sequence of the Homo sapiens Krr1 GXXGlp is evolutionarily conserved (KRRQRLIGPKGSTLKALELLTNCY) and has been associated with ssDNA interaction and ribosome biogenesis. Our goal was to determine the structural elements present in this peptide and evaluate whether TFA affects the stability of GXXGlp during thermal stress. We observed differences in the molecular behavior of the synthetic peptide in the presence and absence of TFA at various peptide concentrations. Finally, 2D IR correlation spectroscopy was used for the determination of the unfolding process, mechanism and extent of peptide aggregation, and the effect of TFA on the stability of the peptide. This spectroscopic method can be applied to the characterization of any synthetic peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.6b04800 | DOI Listing |
JAMA Otolaryngol Head Neck Surg
January 2025
Asia Sleep Centre, Singapore.
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.
Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.
ACS Chem Biol
January 2025
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
The HOX and PBX genes encode transcription factors that have key roles in development and cancer, both independently and as a heterodimer within a complex of proteins that recognizes specific sequences in DNA and can both activate and repress transcription of target genes. Due to functional redundancy amongst HOX proteins, knock down or knock out studies of individual genes often do not result in an altered phenotype. An alternative approach is to target the interaction between HOX and PBX proteins, which is dependent on a conserved hexapeptide region within HOX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!