A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facile Synthesis and Hierarchical Assembly of Flowerlike NiO Structures with Enhanced Dielectric and Microwave Absorption Properties. | LitMetric

In this work, two novel flowerlike NiO hierarchical structures, rose-flower (S1) and silk-flower (S2), were synthesized by using a facial hydrothermal method, coupled with subsequent postannealing process. Structures, morphologies, and magnetic and electromagnetic properties of two NiO structures have been systematically investigated. SEM and TEM results suggested that S1 had a hierarchical rose-flower architecture with diameters in the range of 4-7 μm, whereas S2 exhibited a porous silk-flower architecture with diameters of 0.7-1.0 μm. Electromagnetic performances indicated that the NiO hierarchical structures played a crucial role in determining their dielectric behavior and impedance matching characteristic, which further influenced the microwave attenuation property of absorbers based on them. Due to its hierarchical and porous architectures, S2 had higher microwave absorption performances than S1. The maximum R value for sample S2 can reach -65.1 dB at 13.9 GHz, while an efficient bandwidth of 3 GHz was obtained. In addition, the mechanism of the improved microwave absorption were discussed in detail. It is expected that our NiO hierarchical structures synthesized in this work could be used as a reference to design novel microwave absorption materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b02597DOI Listing

Publication Analysis

Top Keywords

microwave absorption
16
nio hierarchical
12
hierarchical structures
12
flowerlike nio
8
nio structures
8
architecture diameters
8
hierarchical
6
structures
6
nio
5
microwave
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!