RNA-guided CRISPR-Cas9 endonucleases are widely used for genome engineering, but our understanding of Cas9 specificity remains incomplete. Here, we developed a biochemical method (SITE-Seq), using Cas9 programmed with single-guide RNAs (sgRNAs), to identify the sequence of cut sites within genomic DNA. Cells edited with the same Cas9-sgRNA complexes are then assayed for mutations at each cut site using amplicon sequencing. We used SITE-Seq to examine Cas9 specificity with sgRNAs targeting the human genome. The number of sites identified depended on sgRNA sequence and nuclease concentration. Sites identified at lower concentrations showed a higher propensity for off-target mutations in cells. The list of off-target sites showing activity in cells was influenced by sgRNP delivery, cell type and duration of exposure to the nuclease. Collectively, our results underscore the utility of combining comprehensive biochemical identification of off-target sites with independent cell-based measurements of activity at those sites when assessing nuclease activity and specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmeth.4284 | DOI Listing |
Animals (Basel)
December 2024
Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
Transcription factors play important roles in the growth and development of various tissues in pigs, such as muscle, fat, and bone. A transcription-factor-scale activation library based on the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated endonuclease Cas9 (Cas9) system could facilitate the discovery and functional characterization of the transcription genes involved in a specific gene network. Here, we have designed and constructed a CRISPR activation (CRISPRa) sgRNA library, containing 5056 sgRNAs targeting the promoter region of 1264 transcription factors in pigs.
View Article and Find Full Text PDFEMBO Rep
January 2025
Myeloid Therapeutics Inc., Cambridge, MA, 02139, USA.
To address a wide range of genetic diseases, genome editing tools that can achieve targeted delivery of large genes without causing double-strand breaks (DSBs) or requiring DNA templates are necessary. Here, we introduce CRISPR-Enabled Autonomous Transposable Element (CREATE), a genome editing system that combines the programmability and precision of CRISPR/Cas9 with the RNA-mediated gene insertion capabilities of the human LINE-1 (L1) element. CREATE employs a modified L1 mRNA to carry a payload gene, and a Cas9 nickase to facilitate targeted editing by L1-mediated reverse transcription and integration without relying on DSBs or DNA templates.
View Article and Find Full Text PDFEMBO Rep
January 2025
Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
Cancer cells often display centrosome amplification, requiring the kinesin KIFC1/HSET for centrosome clustering to prevent multipolar spindles and cell death. In parallel siRNA screens of deubiquitinase enzymes, we identify OTUD6B as a positive regulator of KIFC1 expression that is required for centrosome clustering in triple-negative breast cancer (TNBC) cells. OTUD6B can localise to centrosomes and the mitotic spindle and interacts with KIFC1.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013.
Objectives: Toxoplasmosis is a zoonotic parasitic disease caused by (), which can lead to complications such as encephalitis and ocular toxoplasmosis. The disease becomes more severe when the host's immune system is compromised. Rhoptry proteins are major virulence factors that enable to invade host cells.
View Article and Find Full Text PDFHum Genet
January 2025
John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
Developmental anomalies of the hearing organ, the cochlea, are diagnosed in approximately one-fourth of individuals with congenital. The majority of patients with cochlear malformations remain etiologically undiagnosed due to insufficient knowledge about underlying genes or the inability to make conclusive interpretations of identified genetic variants. We used exome sequencing for the genetic evaluation of hearing loss associated with cochlear malformations in three probands from unrelated families deafness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!