The derivation of human inner ear tissue from pluripotent stem cells would enable in vitro screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate. Over 2 months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR-Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system should facilitate the study of human inner ear development and research on therapies for diseases of the inner ear.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462862PMC
http://dx.doi.org/10.1038/nbt.3840DOI Listing

Publication Analysis

Top Keywords

inner ear
28
hair cells
16
ear organoids
12
pluripotent stem
12
stem cells
12
functional hair
8
cells
8
human pluripotent
8
human inner
8
culture system
8

Similar Publications

Objective: This multicenter, randomized, double-blind, placebo-controlled, crossover trial aimed to evaluate whether prolonged noisy galvanic vestibular stimulation improves body balance in patients with vestibulopathy.

Materials And Methods: This trial was registered in the Japan Pharmaceutical Information Center Clinical Trials Information registry (jRCT1080224083). Subjects were 20- to 85-year-old patients who had been unsteady for more than one year and whose symptoms had persisted despite more than six months of rehabilitation.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Background and objective Viral infections caused by cytomegalovirus, lymphocytic choriomeningitis virus, varicella-zoster virus, herpes simplex type 1 and type 2, rubella, measles, rubeola, HIV, West Nile virus, Lassa virus, and mumps are known to be associated with hearing loss. There have been reports of inner ear involvement in coronavirus disease 2019 (COVID-19) patients but the extent and variations in cochlear involvement of symptomatic and asymptomatic patients has not been adequately described. This study aimed to evaluate the hearing status among symptomatic and asymptomatic COVID-19 patients to address the prospects for routine screening for hearing loss in COVID-19 patients.

View Article and Find Full Text PDF

Extent of genetic and epigenetic factor reprogramming via a single viral vector construct in deaf adult mice.

Hear Res

December 2024

Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia. Electronic address:

In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage.

View Article and Find Full Text PDF

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!