The IRE1-XBP1 signalling pathway is part of a cellular programme that protects against endoplasmic reticulum (ER) stress, but also controls development and survival of immune cells. Loss of XBP1 in splenic type 1 conventional dendritic cells (cDC1s) results in functional alterations without affecting cell survival. However, in mucosal cDC1s, loss of XBP1 impaired survival in a tissue-specific manner-while lung cDC1s die, intestinal cDC1s survive. This was not caused by differential activation of ER stress cell-death regulators CHOP or JNK. Rather, survival of intestinal cDC1s was associated with their ability to shut down protein synthesis through a protective integrated stress response and their marked increase in regulated IRE1-dependent messenger RNA decay. Furthermore, loss of IRE1 endonuclease on top of XBP1 led to cDC1 loss in the intestine. Thus, mucosal DCs differentially mount ATF4- and IRE1-dependent adaptive mechanisms to survive in the face of ER stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563826 | PMC |
http://dx.doi.org/10.1038/ncb3518 | DOI Listing |
Cell
December 2024
Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
New Phytol
August 2024
Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA.
IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP).
View Article and Find Full Text PDFJ Biol Chem
April 2024
INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France.
The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay).
View Article and Find Full Text PDFEMBO Rep
April 2024
Inserm U1242, University of Rennes, Rennes, France.
Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines.
View Article and Find Full Text PDFNeuro Oncol
May 2024
INSERM U1242, Rennes, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!