Acute airway emergency caused by an organic foreign body located in the laryngeal mucosa.

World J Emerg Med

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany.

Published: January 2017

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409239PMC
http://dx.doi.org/10.5847/wjem.j.1920-8642.2017.02.014DOI Listing

Publication Analysis

Top Keywords

acute airway
4
airway emergency
4
emergency caused
4
caused organic
4
organic foreign
4
foreign body
4
body located
4
located laryngeal
4
laryngeal mucosa
4
acute
1

Similar Publications

[Effect of extra corporeal reducing pre-load on pulmonary mechanical power in patients with acute respiratory distress syndrome].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

December 2024

Department of Public Utilities Development, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.

Objective: To explore the effects of veno-venous extra corporeal carbon dioxide removal (V-V ECCOR) on local mechanical power and gas distribution in the lungs of patients with mild to moderate acute respiratory distress syndrome (ARDS) receiving non-invasive ventilation.

Methods: Retrospective research methods were conducted. Sixty patients with mild to moderate ARDS complicated with renal insufficiency who were transferred to the respiratory intensive care unit (RICU) through the 96195 platform critical care transport green channel from January 2018 to January 2020 at the collaborative hospitals of Henan Provincial People's Hospital were enrolled.

View Article and Find Full Text PDF

Introduction And Objectives: High flow nasal cannula (HFNC) therapy is an increasingly popular mode of non-invasive respiratory support for the treatment of patients with acute hypoxemic respiratory failure (AHRF). Previous experimental studies in healthy subjects have established that HFNC generates flow-dependent positive airway pressures, but no data is available on the levels of mean airway pressure (mP) or positive end-expiratory pressure (PEEP) generated by HFNC therapy in AHRF patients. We aimed to estimate the airway pressures generated by HFNC at different flow rates in patients with AHRF, whose functional lung volume may be significantly reduced compared to healthy subjects due to alveolar consolidation and/or collapse.

View Article and Find Full Text PDF

Background: Pathobiology of asthma and chronic obstructive pulmonary disease (COPD) is associated with changes among respiratory epithelium structure and function. Increased levels of PM from urban particulate matter (UPM) are correlated with enlarged rate of asthma and COPD morbidity as well as acute disease exacerbation. It has been suggested that pre-existing pulmonary obstructive diseases predispose epithelium for different biological response than in healthy airways.

View Article and Find Full Text PDF

Aims: In cystic fibrosis lung transplant recipients (LTRs), graft dysfunction due to acute infections, rejection or chronic lung allograft dysfunction (CLAD) is difficult to distinguish. Characterisation of the airway inflammatory milieu could help detect and prevent graft dysfunction. We speculated that an eosinophil or neutrophil-rich milieu is associated with higher risk of CLAD.

View Article and Find Full Text PDF

Introduction: Children with wheeze and asthma present with airway epithelial vulnerabilities, such as impaired responses to viral infection. It is postulated that the in utero environment may contribute to the development of airway epithelial vulnerabilities. The aims of the study were to establish whether the receptors for rhinovirus (RV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are expressed in the amniotic membrane and whether the pattern of expression is similar to newborn nasal epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!