Background: The main goal of endodontic treatment is to achieve cleaning and shaping prior to the filling process.

Objective: This study aimed to evaluate, using atomic absorption spectrometry, the release of Calcium ions after the use of different chelating agents and protocols of agitation.

Method: Ninety human canine teeth were randomly assigned to one of nine groups (n=10), as follows: 1) 0.2% Chitosan and manual agitation; 2) 0.2% Chitosan and sonic agitation; 3) 0.2% Chitosan and ultrasonic agitation; 4) 17% EDTA and manual agitation; 5) 17% EDTA and sonic agitation; 6) 17% EDTA and ultrasonic agitation; 7) distilled water and manual agitation; 8) distilled water and sonic agitation; 9) distilled water and ultrasonic agitation. Following instrumentation, all chelating substances remained inside the root canal for 3 min. Then the fluid was collected for the identification and quantification of Calcium ions. The amount of Calcium ions released in each group was compared using analysis of variance (ANOVA) and the Kolmogorov-Smirnov and Levene tests followed by Tukey's post-hoc test. Significance was set at 5%.

Results: The groups in which 0.2% Chitosan was used showed the highest concentration of Calcium ions (p<0.05). Concerning the agitation method, ultrasonic agitation showed the greatest values, followed by sonic and manual agitation (all comparisons, p<0.05).

Conclusion: The present findings suggest that, among the combinations here tested, Chitosan associated with ultrasonic agitation yielded the greatest release of Calcium ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388784PMC
http://dx.doi.org/10.2174/1874210601711010133DOI Listing

Publication Analysis

Top Keywords

calcium ions
20
02% chitosan
16
manual agitation
12
sonic agitation
12
ultrasonic agitation
12
agitation 17%
12
17% edta
12
agitation distilled
12
distilled water
12
agitation
10

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.

Background: Mitochondrial reactive oxygen species (mROS), such as superoxide and hydrogen peroxide (HO), are implicated in aging-associated neurological disorders, including Alzheimer's Disease and frontotemporal dementia. Mitochondrial complex III of the respiratory chain has the highest capacity for mROS production and generates mROS toward the cytosol, poising it to regulate intracellular signaling and disease mechanisms. However, the exact triggers of complex III-derived ROS (CIII-ROS), its downstream molecular targets, and its functional roles in dementia-related pathogenesis remain unclear.

View Article and Find Full Text PDF

Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities.

View Article and Find Full Text PDF

Background: Immature maxillary central teeth can be managed by using several treatment options. The aim of this finite element stress analysis study was to evaluate the effect of different treatment procedures on the stresses on immature maxillary incisor teeth models that generated on cone beam computed tomography, by trauma and bite forces.

Methods: A total of 11 different models consisting of revascularization treatment using MTA and biodentine and the state of the root apex formed with cement after treatment, apexification, modified apexification, traditional root canal treatment and two different control groups have been created.

View Article and Find Full Text PDF

Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg), zinc (Zn), and strontium (Sr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!