The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues.

Stem Cells Int

Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.

Published: March 2017

Endothelial progenitor cells (EPCs) derived from bone marrow and blood can differentiate into endothelial cells and promote neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of endogenous stem cells. Human peripheral blood CD34(+) cells containing EPCs have been used in clinical trials of bone repair. Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5387841PMC
http://dx.doi.org/10.1155/2017/1960804DOI Listing

Publication Analysis

Top Keywords

tissue repair
16
musculoskeletal neural
12
epcs
10
endothelial progenitor
8
progenitor cells
8
regeneration musculoskeletal
8
neural tissues
8
cells epcs
8
bone marrow
8
endothelial cells
8

Similar Publications

Novel index for the evaluation of wound healing following erupted tooth extraction.

Minerva Dent Oral Sci

January 2025

Department of Surgical, Medical, Molecular and Critical Area Pathology, University Hospital of Pisa, University of Pisa, Pisa, Italy.

Background: Understanding healing of the alveolar process is crucial for immediate implant, alveolar ridge preservation and guided bone regeneration procedures, and to evaluate it several different scales have been proposed; however, all have different characteristics and seem to miss a standardization allowing for an objective and dichotomous evaluation of the different aspects of wound healing. The objective of the present study is to propose and apply, in real clinical scenarios, a novel index for the objective evaluation of wound healing following erupted tooth extraction.

Methods: Healthy patients in need of a single tooth extraction were enrolled and re-examined at 7, 14 and 21 days after the extraction using the novel index proposed.

View Article and Find Full Text PDF

Reconstruction of the Severe Cervical Scar Contracture Using a Combination of the Pre-expanded Bipedicled Forehead Flap and Lower Trapezius Musculocutaneous Flap.

J Craniofac Surg

January 2025

Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shijingshan District, Beijing, China.

Reconstructing severe cervical scar contractures (SCSC) remains a considerable challenge. This study presents a novel approach to SCSC reconstruction using a combination of pre-expanded bipedicled forehead and lower trapezius musculocutaneous flaps. A retrospective analysis was conducted on 25 patients who underwent this procedure between April 2004 and July 2020.

View Article and Find Full Text PDF

Temperature and light dual-responsive hydrogels for anti-inflammation and wound repair monitoring.

J Mater Chem B

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management.

View Article and Find Full Text PDF

Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization.

View Article and Find Full Text PDF

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!