Greywater (GW) is becoming an important alternative water source for non-potable purposes, but requires treatment to remove contaminants, including micropollutants that in GW mainly originate from personal care products. Biofilters are commonly used for onsite GW treatment, but there are still significant knowledge gaps regarding their ability and mechanism of micropollutants removal. This study investigates the removal of propylparaben (PPB) by aerobic attached-growth biomass, quantifying the kinetics and the interplay between sorption and biodegradation. The ability of biomass, collected from a pilot scale biofilter treating real GW, to eliminate PPB from both synthetic greywater (SGW) and deionized (DI) water was studied in laboratory batch experiments. Elimination of PPB was found to proceed via sorption to biomass followed by biodegradation. Sorption of PPB by biomass in SGW and in DI water exhibited similar kinetics, fitting Langmuir isotherm with the maximum adsorbed amount of 9.8mg g. PPB biodegradation exhibited first-order kinetics in both SGW and DI water, with a 30h lag-phase in SGW and no lag-phase in DI water. This difference is attributed to presence of readily-biodegradable organic matter in the SGW. Actual PPB degradation rate in both cases (excluding the lag phase in SGW) was very similar, 62mg gd, yielding almost full mineralization. These findings show the relative contribution of the major processes involved in PPB elimination by biofilters and can be applied for designing GW treatment units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.04.032 | DOI Listing |
Adv Sci (Weinh)
December 2024
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
Microplastic pollution in terrestrial ecosystems threatens to destabilize large soil carbon stocks that help to mitigate climate change. Carbon-based substrates can release from microplastics and contribute to terrestrial carbon pools, but how these emerging organic compounds influence carbon mineralization and sequestration remains unknown. Here, microcosm experiments are conducted to determine the bioavailability of microplastic-derived dissolved organic matter (MP-DOM) in soils and its contribution to mineral-associated carbon pool.
View Article and Find Full Text PDFArch Environ Contam Toxicol
December 2024
ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ, 08801-3059, USA.
Environmental risk assessments of very hydrophobic organic compounds (VHOCs) in soils are often difficult because multiple processes (e.g., sorption, volatilization, biodegradation) can complicate the interpretation of results.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Department of Ecology, Jinan University, Guangzhou, China.
Vegetated ditches have been demonstrated to be an effective method for pollutant remediation. This study assesses the removal potential and pathways for herbicide runoff pollution utilizing , , , and ditches. Resultes show these vegetated ditches significantly outperform unvegetated ones in removing atrazine and diuron during runoff events ( < 0.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245, Bialystok, Poland.
Microplastics (MPs) in aquatic environments constitute an ideal surface for biofilm formation, facilitating or hindering the transport of contaminants. This study aims to provide knowledge on the sorption behavior of high-density polyethylene (μ-HDPE) after algal degradation toward UV filters. Up to now, the oxidation of μ-HDPE using the microalga Acutodesmus obliquus has not been studied.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
Nanoparticles could improve the bioavailability of active agents of various natures to human, animal, and plant tissues. In this work, we compared two methods on the synthesis of calcium phosphate nanoparticles (CaPs), differed by the synthesis temperature, pH, and concentration of the stabilizing agent, and explored the possibilities of incorporation of a low-molecular-weight peptide analogue enalaprilat, the enzyme superoxide dismutase 1 (SOD1), as well as DNA and dsRNA into these particles, by coprecipitation and sorption. CaPs obtained with and without cooling demonstrated the highest inclusion efficiency for enalaprilat upon coprecipitation: 250 ± 10 μg/mg of CaPs and 340 ± 30 μg/mg of CaPs, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!