Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biopolymer DNA allows to create nanoscale, biocompatible structures, which can be designed in a target-specific and stimuli-responsive manner. DNA carrier systems with these characteristics hold a great potential for nanomedical applications, such as for the treatment of inflammatory diseases. Here we used a DNA-based drug carrier system for the pH-dependent delivery of the glucocorticoid dexamethasone into macrophages, a cell type with a key role in the regulation of inflammation. Dexamethasone (Dex) nanotubes were internalized within minutes by MH-S macrophages in vitro and by tissue resident macrophages in the mouse cremaster muscle in vivo and localized in their endosomes. Treatment with Dex nanotubes in vitro significantly reduced the LPS-induced TNF secretion by macrophages, as compared to equivalent amounts of free dexamethasone without affecting cell viability. Microinjection of Dex nanotubes into postischemic muscle tissue of anesthetized mice resulted in a marked reduction of ischemia-reperfusion-elicited leukocyte transmigration and diminished vascular expression of the endothelial adhesion molecules VCAM-1 and ICAM-1. Taken together, our results demonstrate that DNA nanotubes can be used as a platform for the targeted delivery of glucocorticoids and could thus foster the development of nanomedical therapeutics with reduced off-target effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2017.04.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!