Study of the compression and wear-resistance properties of freeze-cast Ti and Ti‒5W alloy foams for biomedical applications.

J Mech Behav Biomed Mater

School of Materials Science and Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 20707, Republic of Korea. Electronic address:

Published: August 2017

Ti and Ti‒5wt% W alloy foams were produced by freeze-casting process and their mechanical behaviors were compared. The Ti‒5W alloy foam showed a typical acicular Widmanstätten α/β structure with most of the W dissolved in the β phase. An electron-probe microanalysis revealed that approximately 2wt% W was uniformly dissolved in the Ti matrix of Ti‒5W alloy foam with few partially dissolved W particles. The compressive-yield strength of Ti‒5W alloy foam (~323MPa) was approximately 20% higher than that of the Ti foam (~256MPa) owing to the solid-solution-strengthening effect of W in the Ti matrix, which also resulted in a dramatic improvement in the wear resistance of Ti‒5W alloy foam. The compressive behaviors of the Ti and Ti‒5W alloy foams were predicted by analytical models and compared with the experimental values. Compared with the Gibson-Ashby and cellular-lattice-structure-in-square-orientation models of porous materials, the orientation-averaging method provided prediction results that are much more accurate in terms of both the Young's modulus and the yield strength of the Ti and Ti‒5W alloy foams.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2017.04.020DOI Listing

Publication Analysis

Top Keywords

ti‒5w alloy
28
alloy foams
16
alloy foam
16
alloy
8
strength ti‒5w
8
ti‒5w
7
foam
5
study compression
4
compression wear-resistance
4
wear-resistance properties
4

Similar Publications

Balancing Activity and Stability through Compositional Engineering of Ternary PtNi-Au Alloy ORR Catalysts.

ACS Catal

January 2025

Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic.

Achieving the optimal balance between cost-efficiency and stability of oxygen reduction reaction (ORR) catalysts is currently among the key research focuses aiming at reaching a broader implementation of proton-exchange membrane fuel cells (PEMFCs). To address this challenge, we combine two well-established strategies to enhance both activity and stability of platinum-based ORR catalysts. Specifically, we prepare ternary PtNi-Au alloys, where each alloying element plays a distinct role: Ni reduces costs and boosts ORR activity, while Au enhances stability.

View Article and Find Full Text PDF

Recent progress in electrochemical recycling of waste NdFeB magnets.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources.

View Article and Find Full Text PDF

The development of efficient hydrogen evolution reaction (HER) catalysts is crucial for water electrolysis. Currently, Ru-based catalysts are considered top contenders, but issues with stability, activity, and cost remain. In this work, RuNi alloys possessing a solid solution structure within the Ru lattice are prepared via straightforward electrodeposition on various substrates and assessed as HER catalysts in alkaline media.

View Article and Find Full Text PDF

The properties of solids: 'If you want to understand function, study structure'.

J Phys Condens Matter

January 2025

Peter-Grünberg-Institut PGI-1, Forschungszentrum Jülich, D-52425 Jülich, Germany.

The importance of the structure-function relationship in molecular biology was confirmed dramatically by the recent award of the 2024 Nobel Prize in Chemistry 'for computational protein design' and 'for protein structure prediction'. The relationship is also important in chemistry and condensed matter physics, and we survey here structural concepts that have been developed over the past century, particularly in chemistry. As an example we take structural phase transitions in phase-change materials (PCM), which can be switched rapidly and reversibly between amorphous and crystalline states.

View Article and Find Full Text PDF

Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!