The BCR-ABL fusion gene is one of the major causes of 95% of Chronic Myeloid Leukemia (CML). While, BCR-ABL protein is currently being used as a major target to treat CML. Although, current FDA-approved drugs such as; Imatinib and Nilotinib have stupendously improved the patients 5-year's survival rates, the drug resistance has dramatically reduced their effects. So, more accurate and effective alternative treatments are crucially needed. To address this issue, we screened the FDA-approved drugs by virtual screening and binding free energy calculations to identify new inhibitors for the wild-type and T315I gatekeeper mutant ABL1. It was invigorating to identify that chlorohexidine, paromomycin and deferoxamine could inhibit the wild-type ABL1, while chlorohexidine and ritonavir could inhibit the T315I mutant ABL1. The applications of these newly identified drugs are not just an effortless hypothesis in drug discovery. These drugs can be evaluated in phase 2 clinical trials after a simple kinase selectivity assay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2017.04.005DOI Listing

Publication Analysis

Top Keywords

fda-approved drugs
12
t315i mutant
8
virtual screening
8
mutant abl1
8
drugs
5
silico drug
4
drug repurposing
4
repurposing fda-approved
4
drugs predict
4
predict inhibitors
4

Similar Publications

Natural products (NPs) play a crucial role in drug discovery, with over 30% of recent FDA-approved drugs derived from them. Plants from the genus Goniothalamus, belonging to the Annonaceae family, have garnered significant interest as potential sources of active lead compounds. Over the past five decades, researchers have isolated 357 compounds from Goniothalamus species (GCs), which exhibit a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiplasmodial, antioxidant, and other activities.

View Article and Find Full Text PDF

Pharmaceutical salts are a cornerstone in drug development, offering a robust, economical, and industry-friendly option for improving the crucial physicochemical properties of drugs, particularly solubility and dissolution. This review article explores all critical aspects of salt formation, including its importance, the basic chemistry involved, the principles governing counterion selection, the range of counterions used, and the methods for preparing salts along with their advantages and limitations. Additionally, it explores analytical techniques for confirming salt formation and the different approaches various countries adopt in considering new salts as intellectual property.

View Article and Find Full Text PDF

Aging is one of the most significant risk factors for breast cancer. With the growing interest in the alterations of the aging breast tissue microenvironment, it is identified that aging is related to tumorigenesis, invasion, and drug resistance. However, current pre-clinical disease models often neglect the impact of aging and sometimes result in worse clinical outcomes.

View Article and Find Full Text PDF

Single nucleotide polymorphisms (SNPs) represent the prevailing form of genetic variations observed in the human population. Such variations could alter the encoded enzymes' activities. CYP3A4/5 enzymes are involved in metabolizing drugs, notably antivirals against SARS-CoV-2.

View Article and Find Full Text PDF

Millions of women worldwide have breast cancer, a common and possibly fatal illness according to WHO Reports. A genetic mutation usually causes breast adenocarcinomas. Only 5-10% of cancers are induced by genetic mutations that develop with age, and the "wear and tear" of general life causes 85-90% of breast cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!