Exploring contacts of eRF1 with the 3'-terminus of the P site tRNA and mRNA stop signal in the human ribosome at various translation termination steps.

Biochim Biophys Acta Gene Regul Mech

Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia. Electronic address:

Published: July 2017

AI Article Synopsis

  • The study focused on understanding the arrangement of components in translation termination complexes on the human 80S ribosome using site-directed cross-linking with modified tRNA and mRNA.
  • The findings revealed that eRF3 remains bound to the ribosome even after GTP hydrolysis, indicating its consistent presence during termination.
  • Additionally, the research provided detailed insights into the positioning of key elements like the 3'-terminus of tRNA and the mRNA stop signal, which do not change after peptide release, enhancing the understanding of protein synthesis termination in mammals.

Article Abstract

Here we employed site-directed cross-linking with the application of tRNA and mRNA analogues bearing an oxidized ribose at the 3'-terminus to investigate mutual arrangement of the main components of translation termination complexes formed on the human 80S ribosome bound with P site deacylated tRNA using eRF1•eRF3•GTP or eRF1 alone. In addition, we applied a model complex obtained in the same way with eRF1•eRF3•GMPPNP. We found that eRF3 content in the complexes with GTP and GMPPNP is similar, proving that eRF3 does not leave the ribosome after GTP hydrolysis. Our cross-linking data allowed determining locations of the 3'-terminus of the P site tRNA relatively the eRF1 M domain and of the mRNA stop signal toward the N domain and the ribosomal decoding site at the nucleotide-peptide resolution level. Our results indicate that locations of these components do not change after peptide release up to post-termination pre-recycling state, and the positioning of the mRNA stop signal remains similar to that when eRF1 recognizes it. Besides, we found that in all the complexes studied eRF1 shielded the N-terminal part of ribosomal protein eS30 from the interaction with the nucleotide adjacent to stop codon observed with pre-termination ribosome free of eRFs. Altogether, our findings brought important information on contacts of the key structural elements of eRF1, tRNA and mRNA in the ribosomal complexes including those mimicking different translation termination steps, thereby providing a deeper understanding of molecular mechanisms underlying events occurring in the course of protein synthesis termination in mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagrm.2017.04.004DOI Listing

Publication Analysis

Top Keywords

trna mrna
12
mrna signal
12
translation termination
12
3'-terminus site
8
site trna
8
termination steps
8
erf1
6
trna
5
mrna
5
exploring contacts
4

Similar Publications

Background: Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers.

View Article and Find Full Text PDF

Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.

View Article and Find Full Text PDF

Gastric cancer-derived exosomal let-7 g-5p mediated by SERPINE1 promotes macrophage M2 polarization and gastric cancer progression.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.

Background: Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy.

View Article and Find Full Text PDF

Decoding the general role of tRNA queuosine modification in eukaryotes.

Sci Rep

January 2025

Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.

Transfer RNA (tRNA) contains modified nucleosides essential for modulating protein translation. One of these modifications is queuosine (Q), which affects NAU codons translation rate. For decades, multiple studies have reported a wide variety of species-specific Q-related phenotypes in different eukaryotes, hindering the identification of a general underlying mechanism behind that phenotypic diversity.

View Article and Find Full Text PDF

The precise and unambiguous detection and quantification of internal RNA modifications represents a critical step for understanding their physiological functions. The methods of direct RNA sequencing are quickly developing allowing for the precise location of internal RNA marks. This detection is however not quantitative and still presents detection limits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!