Introduction: In this study, we evaluated the caries inhibition and shear bond strength achieved with the addition of the antibacterial monomer [2-(Methacryloyloxy)ethyl] trimethylammonium chloride (MADQUAT) to an adhesive used to bond orthodontic brackets.

Methods: Experimental adhesives were formulated with addition of 0% (control), 5%, or 10% MADQUAT followed by measurement of the degree of conversion. These adhesives were used to lute brackets to the enamel of premolars (n = 30). Biofilm from a microcosm model was cultivated in half of the specimens under cariogenic challenge for 5 days. The brackets were subjected to a shear bond strength test followed by measurement of the internal hardness of the enamel around the brackets to calculate the integrated mineral loss.

Results: The addition of MADQUAT slightly increased the degree of conversion. Adhesive containing 10% MADQUAT significantly reduced the integrated mineral loss around the bracket but also resulted in the lowest values of bond strength. No effects on bond strength and integrated mineral loss were observed with the addition of 5% MADQUAT to the adhesive. The cariogenic challenge did not affect the bond strength and the failure mode.

Conclusions: MADQUAT was effective to reduce the integrated mineral loss only when added to the adhesive at a concentration of 10% despite the reduction of bond strength.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2016.10.028DOI Listing

Publication Analysis

Top Keywords

bond strength
28
integrated mineral
16
cariogenic challenge
12
mineral loss
12
bond
8
shear bond
8
10% madquat
8
degree conversion
8
addition madquat
8
strength
7

Similar Publications

This research aimed to assess the shear bond strength (SBS) of metal brackets bonded to composite veneers using different surface preparations. One-hundred composite disks were divided into 10 different groups whereby each group combines a surface preparation (roughening or no roughening), etching agent (37% phosphoric or 9.5% hydrofluoric acid), adhesive protocol (self-etch or total-etch), and bonding agent (with or without G-Premio Bond).

View Article and Find Full Text PDF

The Degree and Origin of the Cooperativity of the Chalcogen (Ch···N) and Dihydrogen (H···H) Bonds in Some Triad Systems.

J Comput Chem

January 2025

Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.

The strength and cooperative energy of chalcogen and dihydrogen bonds in some ABC triad systems of the types XHTe…NCH…HY (X = F, Cl, Br, I, H; Y = Li, Na, BeH, MgH) and FHCh…NCH…HNa (Ch = Te, Se, S) were computed and compared at several levels of theory. All resulting data showed that the strengths of chalcogen (Te…N) and dihydrogen (H…H) bonds increase in the order of H < I < Br < Cl < F, and Be < Mg < Li < Na, respectively. Then, the comparison of data for the FHTe…NCH…HY, FHSe…NCH…HNa, and FHS…NCH…HNa triads indicated that the interaction, stabilization, and cooperativity energies decrease in the order of Te > Se > S.

View Article and Find Full Text PDF

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.

View Article and Find Full Text PDF

Mechanical Properties and Decomposition Behavior of Compression Moldable Poly(Malic Acid)/-Tricalcium Phosphate Hybrid Materials.

Polymers (Basel)

January 2025

Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.

Calcified tissues in living organisms, such as bone, dentin, and enamel, often require surgical intervention for treatment. However, advances in regenerative medicine have increased the demand for materials to assist in regenerating these tissues. Among the various forms of calcium phosphate (CaP), tricalcium phosphate (TCP)-particularly its α-TCP form-stands out due to its high solubility and efficient calcium release, making it a promising candidate for bone regeneration applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!