Next-Generation Sequencing (NGS) technologies have deeply changed the throughput of genetic testing allowing analyzing millions of DNA fragments in parallel. One key application is the understanding of genetically heterogeneous and complex diseases where 50-100 different genes may converge to control the same pathways. These disorders cannot be studied using traditional approaches, based on gene-by-gene Sanger sequencing. We have set up an NGS protocol based on a specific selection of DNA regions belonging to about 900 genes of the autophagy-lysosomal (ALP) pathway. We here specify all the technical steps and challenges of our protocol, named LysoPlex. This is based on the Haloplex technology and together with high-coverage sequencing empowers a high and uniform coverage of ALP genes. LysoPlex outplays other NGS applications in sensitivity and specificity, providing an accurate picture of all variations in ALP genes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6934-0_15DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
alp genes
8
sequencing approaches
4
approaches define
4
define role
4
role autophagy
4
autophagy lysosomal
4
lysosomal pathway
4
pathway human
4
human disease
4

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer-related death by 2030. Early identification is rare, with a 5-year overall survival (OS) of less than 10%. Advances in the understanding of PDAC tumor biology are needed to improve these outcomes.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the efficacy of third-generation sequencing (TGS) and a thalassemia (Thal) gene diagnostic kit in identifying Thal gene mutations.

Methods: Blood samples (n = 119) with positive hematology screening results were tested using polymerase chain reaction (PCR)-based methods and TGS on the PacBio-Sequel-II-platform, respectively.

Results: Out of the 119 cases, 106 cases showed fully consistent results between the two methods, with TGS identified HBA1/2 and HBB gene mutations in 82 individuals.

View Article and Find Full Text PDF

Basal cell carcinomas (BCC) are driven primarily by cumulative ultraviolet (UV) radiation exposure resulting in activation of the Hedgehog (Hh) signaling pathway, often as a result of UV-mediated Patched-1 (PTCH1) gene inactivation. Accordingly, BCCs most commonly arise at sun-exposed sites such as the head and neck. Very rarely, BCCs can arise at sun-protected sites such as the genital skin and perianal area.

View Article and Find Full Text PDF

Background: The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis.

Methods: In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML.

View Article and Find Full Text PDF

Four novel HLA-B noncoding variants detected by next-generation sequencing: HLA-B*07:02:107, -B*08:01:78, -B*15:01:89 and -B*52:01:58.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!