Background: Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function.
Methods: Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques.
Results: ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs.
Conclusion: Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000475436 | DOI Listing |
Cancer Metab
January 2025
Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
Invasiveness of pituitary adenoma is the main cause of its poor prognosis, mechanism of which remains largely unknown. In this study, the differential proteins between invasive and non-invasive pituitary tumors (IPA and NIPA) were identified by TMT labeled quantitative proteomics. The differential metabolites in venous bloods from patients with IPA and NIPA were analyzed by untargeted metabolomics.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
Background: Seed shattering (SS) negatively impacts seed yield in Psathyrostachys juncea. Understanding and improving the SS trait requires elucidating the regulatory mechanisms of SS and identifying the key genes involved.
Results: This study presents a comprehensive analysis of the abscission zone (AZ) structures at four developmental stages in two P.
Molecules
November 2024
National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China.
T-2 toxin, a highly toxic type A trichothecene, is a secondary fungal metabolite produced by various Fusarium species. The consumption of food and feed contaminated with T-2 toxin is a major factor contributing to growth retardation, posing significant risks to both human and animal health. However, the specific targets and mechanisms that mitigate T-2 toxin-induced growth retardation remain unclear.
View Article and Find Full Text PDFNon-functioning pituitary adenomas (NFPAs) are a highly heterogeneous group and often show invasion, but few studies have explored the invasion mechanism and biomarkers for specific subtypes. This study was designed to describe the role of HIF1α and its downstream genes in specific subtypes of NFPAs. Specimens were classified into two subtypes of NFPAs: 46 null cell adenomas (28 invasive and 18 noninvasive) and 46 oncocytomas (11 invasive and 35 noninvasive).
View Article and Find Full Text PDFJ Physiol Investig
November 2024
Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan.
Tomatidine, a major tomato glycoalkaloid, is effective for the prevention of skeletal muscle wasting and enhancing mitophagy. However, its effects on transmembrane ionic currents are not well explored. In this study, we explored the interactions between tomatidine and Na+ current.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!