Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

Rev Sci Instrum

Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084, China and Ministry of Education, Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Beijing 100084, China.

Published: April 2017

As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4981131DOI Listing

Publication Analysis

Top Keywords

thomson scattering
16
scattering x-ray
16
hopg crystal
12
reconstruct spectrum
8
x-ray source
8
x-ray sources
8
x-ray
7
diffraction based
4
based method
4
method reconstruct
4

Similar Publications

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior.

View Article and Find Full Text PDF

The individual polarization components of nonlinear Thomson scattering arise from the separate dimensions of electron figure-8 motion caused by a linearly polarized laser field. We present the first measurements of nonlinear Thomson scattering in both emission hemispheres. In the electron average rest frame, the shape of the electron figure-8 path is symmetric about the laser polarization dimension.

View Article and Find Full Text PDF

In the "method of four coefficients," electrical resistivity (ρ), Seebeck coefficient (S), Hall coefficient (RH), and Nernst coefficient (Q) of a material are measured and typically fit or modeled with theoretical expressions based on Boltzmann transport theory to glean experimental insights into features of electronic structure and/or charge carrier scattering mechanisms in materials. Although well-defined and readily available reference materials exist for validating measurements of ρ and S, none currently exists for RH or Q. We show that measurements of all four transport coefficients-ρ, S, RH, and Q-can be validated using a single reference sample, namely, the low-temperature Seebeck coefficient Standard Reference Material® (SRM) 3451 (composition Bi2Te3+x) available from the National Institute for Standards and Technology (NIST) without the need for inter-laboratory sample exchange.

View Article and Find Full Text PDF

A new thermal helium beam diagnostic has been implemented in the outer lower divertor of the ASDEX Upgrade tokamak. The purpose of this diagnostic is to measure two-dimensional profiles of electron density (ne) and temperature (Te) with high temporal and spatial resolution. The geometry of the lines of sight is chosen to avoid the influence of prompt recycling and to optimize the resolution without significantly impacting the divertor structure.

View Article and Find Full Text PDF

The self-assembly of amyloid-β peptide (Aβ) into fibrils and oligomers is linked to Alzheimer's disease (AD). Fibrillar aggregates in AD patient's brains contain several post-translational modifications, including phosphorylation at positions 8 and 26. These play a key role in modifying the aggregation propensity of Aβ, yet how they affect the mechanism of aggregation is only poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!