Field-theoretic simulations of block copolymer nanocomposites in a constant interfacial tension ensemble.

J Chem Phys

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19106, USA.

Published: April 2017

Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4981912DOI Listing

Publication Analysis

Top Keywords

block copolymer
24
copolymer nanocomposites
12
domain spacing
12
nanoparticle distribution
12
field-theoretic simulations
8
interfacial tension
8
tension ensemble
8
ideal domain
8
spacing modulus
8
block
7

Similar Publications

Melt electrowriting of amorphous solid dispersions: Influence of drug and plasticizer on rheology and printing performance.

Int J Pharm

January 2025

Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB55 00014 Helsinki, Finland. Electronic address:

Drug loaded microfiber scaffolds have potential for sublingual drug delivery due to their fast dissolution time and tunable porosity. Such microfiber scaffolds can be prepared by melt electrowriting (MEW), wherein a polymer melt is electrostatically drawn out of a syringe onto a computer controlled moving collector. The fabrication of such scaffolds via MEW has previously been shown for a polymer with a glass transition temperature (T) just above room temperature, making handling challenging.

View Article and Find Full Text PDF

Gas-Releasing Polymer Tubesomes: Boosting Gas Delivery of Nanovehicles via Membrane Stretching.

Angew Chem Int Ed Engl

January 2025

Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.

Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.

View Article and Find Full Text PDF

With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting.

View Article and Find Full Text PDF

Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.

View Article and Find Full Text PDF

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!