Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photooxidation of As(III) in ternary As(III) - Fe(III) - Fulvic acid system at pH 4 was investigated by optical spectroscopy, steady-state photolysis (365 nm) and atomic-emission spectrometry with inductively coupled plasma techniques. It was found that at all values of [FA]/[Fe] ratio the main photoactive species is OH radical formed by photolysis of Fe(III) hydroxocomplexes. Addition of fulvic acid leads to mainly negative effect on As(III) photooxidation due to the following reasons: (i) slow dark reduction of photoactive Fe(III) species with formation of scattering particles and photoinert Fe(II) species; (ii) formation of photoreductive Fe(III)-FA complexes incapable to oxidize As(III), (iii) competition of both FA and Fe(III)-FA complexes for UVA quanta with FeOH complex and for OH radicals with As(III). Aging of ternary system is also very important parameter leading to one order decrease of quantum yields of both Fe(II) formation and As(III) photooxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.04.103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!