A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidative stress promotes myocardial fibrosis by upregulating K3.1 channel expression in AGT-REN double transgenic hypertensive mice. | LitMetric

Oxidative stress promotes myocardial fibrosis by upregulating K3.1 channel expression in AGT-REN double transgenic hypertensive mice.

Pflugers Arch

Department of Physiology, School of Basic Medical Science, North China University of Science and Technology, No. 57, Jianshe South Road, Tangshan, 063000, Hebei Province, People's Republic of China.

Published: September 2017

The intermediate-conductance Ca-activated K (K3.1) channels play a pivotal role in the cardiac fibroblast proliferation and inflammatory reaction during the progression of myocardial fibrosis. However, the relationship between K3.1 expression and oxidative stress, the important factor of promoting fibrosis, has not been clearly established. This study was designed to investigate whether the role of oxidative stress in promoting myocardial fibrosis is related to K3.1 channel by using biochemical approaches. It was found that mean blood pressure, plasma Ang II level, and myocardium malondialdehyde (MDA) content of angiotensinogen-renin (AGT-REN) double transgenic hypertension (dTH) mice were higher than those in wild-type (WT) mice of the same age (4, 8 and 12 months) and were significantly increased with age. However, plasma Ang (1-7) level and myocardium superoxide dismutase (SOD) activity showed a downward trend and were lower than those of the same-aged WT mice (4, 8 and 12 months). In addition, protein expression of myocardium K3.1 channel in 4-, 8-, and 12-month-old dTH mice were significantly higher than that of the same-aged WT mice and gradually increased with age. TRAM-34, a blocker of K3.1 channel, and losartan mitigated the myocardial structural and functional damage by inhibiting collagen deposition and decreasing the expression of β-MHC. After intervention of ROS scavenger N-acetyl cysteine (NAC) and NADPH inhibitor apocynin (Apo) in 6-month-old dTH mice for 4 weeks, myocardial oxidative stress level was reduced and K3.1 channel protein expression was decreased. Meanwhile, Apo inhibited the myocardium p-ERK1/2/T-ERK protein expression in dTH mice, and after blockage of ERK1/2 pathway with PD98059, the K3.1 protein expression was reduced. These results demonstrate for the first time that K3.1 channel is likely to be a critical target on the oxidative stress for its promoting role in myocardial fibrosis, and the ERK1/2 pathway may be involved in the regulation of oxidative stress to K3.1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-017-1984-0DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
k31 channel
24
myocardial fibrosis
16
dth mice
16
protein expression
16
k31
10
agt-ren double
8
double transgenic
8
mice
8
stress promoting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!