Metabolically inactive insulin analogue does not prevent autoimmune diabetes in NOD mice.

Diabetologia

Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID) and Clinical Genomics Program, NIAID, National Institutes of Health, Building 10, Room 11D14, 10 Center Drive, Bethesda, MD, 20814, USA.

Published: August 2017

Aims/hypothesis: Insulin is widely considered to be a driver antigen in type 1 diabetes in humans and in mouse models of the disease. Therefore, insulin or insulin analogues are candidates for tolerogenic drugs to prevent disease onset in individuals with risk of diabetes. Previous experiments have shown that autoimmune diabetes can be prevented in NOD mice by repeated doses of insulin administered via an oral, nasal or parenteral route, but clinical trials in humans have not succeeded. The hypoglycaemic activity of insulin is dose-limiting in clinical studies attempting tolerance and disease prevention. Here, we aimed to investigate the therapeutic potential of metabolically inactive insulin analogue (MII) in NOD mice.

Methods: The tolerogenic potential of MII to prevent autoimmune diabetes was studied by administering multiple i.v. or s.c. injections of MII to non-diabetic 7-12-week-old female NOD mice in three geographical colony locations. The incidence of diabetes was assessed from daily or weekly blood glucose measurements. The effect of MII on insulin autoantibody levels was studied using an electrochemiluminescence-based insulin autoantibody assay. The effect on the number of insulin-reactive CD8 and CD4 T lymphocytes in peripheral lymphoid tissue was studied with MHC class I and MHC class II tetramers, respectively.

Results: We found that twice-weekly s.c. administration of MII accelerates rather than prevents diabetes. High-dose i.v. treatment did not prevent disease or affect insulin autoantibody levels, but it increased the amount of insulin-reactive CD4 T lymphocytes in peripheral lymphoid tissue.

Conclusions/interpretation: Our data suggest that parenteral MII, even when used in high doses, has little or no therapeutic potential in NOD mice and may exacerbate disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661969PMC
http://dx.doi.org/10.1007/s00125-017-4276-5DOI Listing

Publication Analysis

Top Keywords

nod mice
16
autoimmune diabetes
12
insulin autoantibody
12
insulin
10
metabolically inactive
8
inactive insulin
8
insulin analogue
8
prevent autoimmune
8
prevent disease
8
therapeutic potential
8

Similar Publications

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay.

View Article and Find Full Text PDF

Following traumatic brain injury (TBI), inhibition of the Na-K-Cl cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI.

View Article and Find Full Text PDF

Methamphetamine is a widely abused drug associated with significant neuroinflammation and neurodegeneration, mainly through the activation of glial cells and neurons in the central nervous system. This study investigates the role of the astrocyte-specific NOD-like receptor family pyrin domain-containing protein 6 (NLRP6) inflammasome in methamphetamine-induced astrocytic pyroptosis and neuroinflammation. Our findings demonstrate that methamphetamine exposure induces NLRP6-dependent pyroptosis, astrocyte activation, and the release of proinflammatory cytokines in mouse primary astrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!