Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Icewine is a sweet dessert wine made from pressing grapes naturally frozen on the vines. It is likely that freeze/thaw cycles endured by icewine grapes change their chemical and sensory profiles due to climatic events. Our objective was to determine the influence of harvest date on icewine must and wine basic chemical variables and aroma compounds. Riesling and Vidal icewines were made from grapes picked between December 2004 and February 2005; Harvest 1 (H1): 19 December; Harvest 2: 29 December; Harvest 3 (H3): 18 January; and Harvest 4 (H4): 11 February (Vidal only). Icewine musts differed in titratable acidity and pH (Vidal only). All basic wine chemical analytes differed across harvest dates. All aroma compounds differed in Vidal and Riesling wines. Highest concentrations for most aroma compounds were in the last harvest date; 16 of 24 for Vidal and 17 of 23 for Riesling. The latest harvest date had highest ethyl isobutyrate, ethyl 3-methylbutyrate, 1-hexanol, 1-octen-3-ol, 1-octanol, cis-rose oxide, nerol oxide, ethyl benzoate, ethyl phenylacetate, γ-nonalactone and β-damascenone. H1 had highest ethyl butyrate, ethyl hexanoate, linalool, 4-vinylguaiacol and ethyl octanoate. Based on odor activity values, the most odor-potent compounds were β-damascenone, cis-rose oxide, 1-octen-3-ol, ethyl octanoate, ethyl hexanoate, and 4-vinylguaiacol across harvest dates. PCA found most aroma compounds associated with the last harvest date, 4-vinylguaicol excepted, which was associated with H1. Harvest date was considered a discriminating dimension using canonical variant analysis for volatile compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2015.06.046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!