This study was motivated by the desire to develop a non-invasive means to treat abscesses, and represents the first steps toward that goal. Non-thermal, high-intensity focused ultrasound (HIFU) was used to inactivate Escherichia coli (∼1 × 10 cells/mL) in suspension. Cells were treated in 96-well culture plate wells using 1.95-MHz ultrasound and incident focal acoustic pressures as high as 16 MPa peak positive and 9.9 MPa peak negative (free field measurements). The surviving fraction was assessed by coliform culture and the alamarBlue assay. No biologically significant heating was associated with ultrasound exposure. Bacterial inactivation kinetics were well described by a half-life model, with a half-time of 1.2 min. At the highest exposure levels, a 2log inactivation was typically achieved within 10 min. The free field-equivalent peak negative acoustic pressure threshold for inactivation was ∼7 MPa. At the highest acoustic pressures used, inactivation efficacy was insensitive to reciprocal changes in pulse length and pulse repetition frequency at constant duty factor. Although treated volumes were very small, proof of principle was provided by these experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503452 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2017.03.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!