Background: Enhancing the antitumor activity of the DNA-damaging drugs is an attractive strategy to improve current treatment options. Trabectedin is an isoquinoline alkylating agent with a peculiar mechanism of action. It binds to minor groove of DNA inducing single- and double-strand-breaks. These kinds of damage lead to the activation of PARP1, a first-line enzyme in DNA-damage response pathways. We hypothesized that PARP1 targeting could perpetuate trabectedin-induced DNA damage in tumor cells leading finally to cell death.

Methods: We investigated trabectedin and PARP1 inhibitor synergism in several tumor histotypes both in vitro and in vivo (subcutaneous and orthotopic tumor xenografts in mice). We searched for key determinants of drug synergism by comparative genomic hybridization (aCGH) and gene expression profiling (GEP) and validated their functional role.

Results: Trabectedin activated PARP1 enzyme and the combination with PARP1 inhibitors potentiated DNA damage, cell cycle arrest at G2/M checkpoint and apoptosis, if compared to single agents. Olaparib was the most active PARP1 inhibitor to combine with trabectedin and we confirmed the antitumor and antimetastatic activity of trabectedin/olaparib combination in mice models. However, we observed different degree of trabectedin/olaparib synergism among different cell lines. Namely, in DMR leiomyosarcoma models the combination was significantly more active than single agents, while in SJSA-1 osteosarcoma models no further advantage was obtained if compared to trabectedin alone. aCGH and GEP revealed that key components of DNA-repair pathways were involved in trabectedin/olaparib synergism. In particular, PARP1 expression dictated the degree of the synergism. Indeed, trabectedin/olaparib synergism was increased after PARP1 overexpression and reduced after PARP1 silencing.

Conclusions: PARP1 inhibition potentiated trabectedin activity in a PARP1-dependent manner and PARP1 expression in tumor cells might be a useful predictive biomarker that deserves clinical evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410089PMC
http://dx.doi.org/10.1186/s12943-017-0652-5DOI Listing

Publication Analysis

Top Keywords

parp1
13
parp1 expression
12
trabectedin/olaparib synergism
12
antitumor activity
8
trabectedin parp1
8
parp1 inhibitors
8
dna damage
8
tumor cells
8
parp1 inhibitor
8
single agents
8

Similar Publications

Therapeutic potential of -based Eefooton in patients with chronic kidney disease: from clinical to bench study.

Int J Med Sci

January 2025

Kaohsiung Veterans General Hospital Director, Department of Medical Education and Research Chairman of International Affairs Committee, Taiwan Society of Nephrology, Kaohsiung City 813414, Taiwan.

Chronic kidney disease (CKD) is a global health concern, and recent clinical evidence suggests the potential of traditional Chinese medicine (TCM) to slow CKD progression. This offers alternative strategies for CKD patients, mitigating risks related to polypharmacy and adverse drug reactions. Our self-controlled, prospective study aims to assess the impact of Eefooton (EFT), a TCM-based regimen, on kidney health in stage 3-5 CKD patients.

View Article and Find Full Text PDF

[Synergistic Effect of IGF1-R Inhibitor AEW541 on Imatinib Inducing SUP-B15 Cell Death].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, The Affiliated Hospital of Xuzhou Medical University.

Objective: To explore whether Ph acute lymphoblastic leukemia (ALL) cell line SUP-B15 treated with imatinib occurs a tolerant status charactered by cell proliferation suppression but apoptotic resistance, then evaluate whether IGF1-R inhibitor AEW541 can break this tolerance, and further explain its mechanisms.

Methods: SUP-B15 cells were treated with different concentrations of imatinib or AEW541. Cell proliferation was assayed by Deep Blue, and apoptotic cells were determined by Annexin V/7-AAD staining.

View Article and Find Full Text PDF

Serum miR-365b-5p/miR-222-5p as a potential diagnostic biomarker for long-term weight loss in patients with morbid obesity after bariatric surgery.

Metabolism

December 2024

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Malaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.

Background: The successful weight loss following bariatric surgery is not achieved in all patients with morbid obesity (MO). This study aims to determine whether a serum miRNA profile can predict this outcome.

Design: Thirty-three patients with MO were classified in "Good Responders" (GR, percentage of excess weight loss (%EWL) ≥ 50 %) or "Non-Responders" (NR, %EWL < 50 %) according to the %EWL 5-8 year following bariatric surgery.

View Article and Find Full Text PDF

Hybrid membrane based biomimetic nanodrug with high-efficient melanoma-homing and NIR-II laser-amplified peroxynitrite boost properties for enhancing antitumor therapy via effective immunoactivation.

Biomaterials

December 2024

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO boost properties was designed for melanoma treatment.

View Article and Find Full Text PDF

Introduction: Extensive agricultural activity results in significant exposure to pesticides, particularly glyphosate, which has been linked to immunological disorders, including apoptosis and inflammation. , a species from the Bromeliaceaefamily native to Mexico, is traditionally used in folk medicine for its medicinal properties, including anti-inflammatory effects. This research aimed to evaluate the protective effects of extract on human peripheral blood mononuclear cells (PBMCs) exposed to Faena®, a commercially available glyphosate-based herbicide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!