Glioma is the most common human brain cancer and has poor prognosis. Messenger RNA profiling identified that sineoculis homeobox homolog 1 (Six1) is dysregulated in glioma tumor progenitor cells from glial progenitor cells isolated from normal white matter. However, the expression and role of Six1 in glioma remains unclear. The purpose of the present study was to investigate the expression level of Six1 in glioma tissues and the association between Six1 expression and clinicopathological characteristics and prognosis of gliomas. The Six1 protein was detected by immunohistochemistry in 163 glioma tissues of distinct malignancy grades, and Kaplan-Meier survival analysis was performed to assess the prognosis of the patients. The Six1 protein was stained in 49.1% (80 out of 163) of the glioma tissues, including 34.2% of low-grade [World Health Organization (WHO) I/II] gliomas and 80.8% of high-grade (WHO III/IV) gliomas. Normal brain tissues rarely expressed the Six1 protein. In addition, Six1 expression was significantly associated with WHO grade (P<0.001). According to the log-rank test and Cox regression model, Six1 may be suggested as an independent prognostic factor, in addition to the WHO grade. Overall, Six1 protein expression varies between different grades of glioma and is associated with the WHO grade. Upregulation of Six1 is more frequent in high-grade glioma and is an independent prognostic factor of poor clinical outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403215 | PMC |
http://dx.doi.org/10.3892/ol.2017.5577 | DOI Listing |
Sci Rep
January 2025
Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6.
View Article and Find Full Text PDFThyroid Res
December 2024
Pathology department, Faculty of Medicine, Minia University, Minia, Egypt.
Skelet Muscle
December 2024
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
Cell Mol Biol Lett
December 2024
Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
Background: Sentrin/SUMO-specific protease 3 (SENP3) is essential to regulate protein stability and function in normal and cancer cells. Nevertheless, its role and action mechanisms in prostate cancer (PCa) remain elusive. Thus, clarification of SENP3's involvement and the SUMOylation process in PCa is pivotal for discovering potential targets and understanding SUMOylation dynamics.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China.
Aerobic glycolysis is a hallmark of cancer and is regulated by growth factors, protein kinases and transcription factors. However, it remains poorly understood how these components interact to regulate aerobic glycolysis coordinately. Here, we show that sine oculis homeobox 1 (SIX1) phosphorylation integrates growth factors (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!