Objectives: The Berlin Heart EXCOR ® (EXCOR) paediatric ventricular assist device is used worldwide for mechanical support of infants and small children with end-stage heart failure. A clinically important gap between the smallest EXCOR blood pump (10 ml) and the next larger size (25 ml) limited the choice of pump size in patients with a body surface area (BSA) between 0.33 and 0.5 m 2 . We present the first clinical experience from the early product surveillance (EPS) of the new EXCOR 15-ml blood pump.

Methods: After CE and U.S. Food and Drug Administration approval in January 2013, 20 patients with a mean age of 1.6 years (range 0.5-3.5 years) and a mean BSA of 0.45 m 2 (range 0.33-0.59 m 2 ) were enrolled in the EPS. The main diagnosis was idiopathic cardiomyopathy in 13 patients; the majority ( n =  16) of children were in INTERMACS level 1 or 2. Data from high-volume paediatric transplant centres were collected prospectively for a defined follow-up period of 60 days after device implantation.

Results: Mean time on the EXCOR 15-ml blood pump was 43 days; the survival rate was 100% at the end of the EPS period. Seven patients underwent a heart transplant from the device; 2 children were weaned; and 11 patients remained on support. Infection of cannula exit sites occurred in 3 patients. Two patients had minor thromboembolic strokes but made a complete neurological recovery.

Conclusions: The new EXCOR 15-ml blood pump demonstrated optimal ventricular assist device support of children with a BSA of 0.33-0.5 m 2 .

Download full-text PDF

Source
http://dx.doi.org/10.1093/icvts/ivw437DOI Listing

Publication Analysis

Top Keywords

ventricular assist
12
assist device
12
blood pump
12
excor 15-ml
12
15-ml blood
12
paediatric ventricular
8
berlin heart
8
patients
7
excor
6
device
5

Similar Publications

Objective: The objective was to evaluate the etiology, natural history, and impact of surgical intervention on outcomes of left ventricular assist device (LVAD) patients presenting with intracranial hemorrhage (ICH).

Methods: The authors completed a retrospective review of LVAD patients who presented with ICH at 2 centers between 2013 and 2022. Patients were reviewed for demographic, clinical, and radiographic variables.

View Article and Find Full Text PDF

Background: Imaging both electrical and mechanical cardiac function can better characterize cardiac disease and improve patient care. Currently, there is no noninvasive technique that can simultaneously image both electrical and mechanical function of the whole heart at the point of care. Here, our aim is to demonstrate that high volume-rate echocardiography can simultaneously map cardiac electromechanical activation and end-systolic cardiac strain of the whole heart in a single heartbeat.

View Article and Find Full Text PDF

Echocardiography is crucial for evaluating patients at risk of clinical deterioration. Left ventricular ejection fraction (LVEF) and velocity time integral (VTI) aid in diagnosing shock, but bedside calculations can be time-consuming and prone to variability. Artificial intelligence technology shows promise in providing assistance to clinicians performing point-of-care echocardiography.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a complex and heterogeneous cardiac disorder, often complicated by cardiogenic shock, a life-threatening condition marked by severe cardiac output failure. Managing cardiogenic shock in HCM patients presents unique challenges due to the distinct pathophysiology of the disease, which includes dynamic left ventricular outflow tract obstruction, diastolic dysfunction, and myocardial ischemia. This review discusses current and emerging therapeutic strategies tailored to address the complexities of HCM-associated cardiogenic shock and other diseases with similar pathophysiology that provoke left ventricular outflow tract obstruction.

View Article and Find Full Text PDF

The Introduction of a New Mobile Driving Unit for a Ventricular Assist Device in a Pediatric Patient (EXCOR Active).

J Cardiovasc Dev Dis

December 2024

Pediatric Cardiovascular Surgery, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, 8008 Zurich, Switzerland.

Pediatric patients supported by extracorporeal ventricular assist devices traditionally require long-term stationary inpatient settings. Limited mobility and permanent hospitalization significantly reduce their quality of life. Berlin Heart address this with their novel mobile driving unit, EXCOR Active.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!