Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients.

Neuro Oncol

Division of Neurosurgery and Division of Biostatistics, University of California San Diego (UCSD), San Diego, California, USA; Exosome Diagnostics, Inc, New York, New York, USA; Department of Neurosurgery, University of Miami, Miami, Florida, USA; Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA; Neurochirurgische Klinik und Poliklinik, Munchen, Germany; Henry Ford Health System, Department of Neurosurgery, Detroit, Michigan, USA; Department of Neurosurgery, Vanderbilt University, Nashville, Tennessee, USA; Department of Neurosurgery, Northwestern University, Chicago, Illinois, USA; Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA; Department of Neurosurgery, MD Anderson Cancer Center, Houston, Texas, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Neurology, Swedish Medical Center, Seattle, Washington, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.

Published: October 2017

Background: RNAs within extracellular vesicles (EVs) have potential as diagnostic biomarkers for patients with cancer and are identified in a variety of biofluids. Glioblastomas (GBMs) release EVs containing RNA into cerebrospinal fluid (CSF). Here we describe a multi-institutional study of RNA extracted from CSF-derived EVs of GBM patients to detect the presence of tumor-associated amplifications and mutations in epidermal growth factor receptor (EGFR).

Methods: CSF and matching tumor tissue were obtained from patients undergoing resection of GBMs. We determined wild-type (wt)EGFR DNA copy number amplification, as well as wtEGFR and EGFR variant (v)III RNA expression in tumor samples. We also characterized wtEGFR and EGFRvIII RNA expression in CSF-derived EVs.

Results: EGFRvIII-positive tumors had significantly greater wtEGFR DNA amplification (P = 0.02) and RNA expression (P = 0.03), and EGFRvIII-positive CSF-derived EVs had significantly more wtEGFR RNA expression (P = 0.004). EGFRvIII was detected in CSF-derived EVs for 14 of the 23 EGFRvIII tissue-positive GBM patients. Conversely, only one of the 48 EGFRvIII tissue-negative patients had the EGFRvIII mutation detected in their CSF-derived EVs. These results yield a sensitivity of 61% and a specificity of 98% for the utility of CSF-derived EVs to detect an EGFRvIII-positive GBM.

Conclusion: Our results demonstrate CSF-derived EVs contain RNA signatures reflective of the underlying molecular genetic status of GBMs in terms of wtEGFR expression and EGFRvIII status. The high specificity of the CSF-derived EV diagnostic test gives us an accurate determination of positive EGFRvIII tumor status and is essentially a less invasive "liquid biopsy" that might direct mutation-specific therapies for GBMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737576PMC
http://dx.doi.org/10.1093/neuonc/nox085DOI Listing

Publication Analysis

Top Keywords

csf-derived evs
24
rna expression
16
csf-derived
9
egfrviii
8
egfrviii mutation
8
extracellular vesicles
8
evs
8
evs rna
8
gbm patients
8
wtegfr dna
8

Similar Publications

Reduced serum level of insulin-like growth factor 1 (IGF-1), a major regulator of perinatal development, in extremely preterm infants has been shown to be associated with neurodevelopmental impairment. To clarify the mechanism of IGF-1 transport at the blood-cerebrospinal fluid (CSF) barrier of the immature brain, we combined studies of in vivo preterm piglet and rabbit models with an in vitro transwell cell culture model of neonatal primary murine choroid plexus epithelial (ChPE) cells. We identified IGF-1-positive intracellular vesicles in ChPE cells and provided data indicating a directional transport of IGF-1 from the basolateral to the apical media in extracellular vesicles (EVs).

View Article and Find Full Text PDF

Changes in circulating extracellular vesicle cargo are associated with cognitive decline after major surgery: an observational case-control study.

Br J Anaesth

October 2024

Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden. Electronic address:

Background: Postoperative neurocognitive decline is a frequent complication triggered by unclear signalling mechanisms. This observational case-control study investigated the effects of hip or knee replacement surgery on the composition of circulating extracellular vesicles (EVs), potential periphery-to-brain messengers, and their association with neurocognitive outcomes.

Methods: We mapped the microRNAome and proteome of plasma-derived EVs from 12 patients (six with good and six with poor neurocognitive outcomes at 3 months after surgery) at preoperative and postoperative timepoints (4, 8, 24, and 48 h).

View Article and Find Full Text PDF

Despite the efforts to identify fluid biomarkers to improve diagnosis of Frontotemporal dementia (FTD), only a few candidates have been described in recent years. In a previous study, we identified three circulating miRNAs (miR-92a-3p, miR-320a and miR-320b) differentially expressed in FTD patients with respect to healthy controls and/or Alzheimer's disease (AD) patients. Now, we investigated whether those changes could be due to miRNAs contained in neuron-derived extracellular vesicles (NDEVs).

View Article and Find Full Text PDF

Dementia is a leading cause of death worldwide, with increasing prevalence as global life expectancy increases. The most common neurodegenerative disorders are Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). With this study, we took an in-depth look at the proteome of the (non-purified) cerebrospinal fluid (CSF) and the CSF-derived extracellular vesicles (EVs) of AD, PD, PD-MCI (Parkinson's disease with mild cognitive impairment), PDD and DLB patients analysed by label-free mass spectrometry.

View Article and Find Full Text PDF

Phosphoproteome analysis of cerebrospinal fluid extracellular vesicles in primary central nervous system lymphoma.

Analyst

July 2023

State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, Southeast University, Nanjing City, China.

Primary central nervous system lymphoma (PCNSL) is a rare but highly aggressive extra-nodal non-Hodgkin's lymphoma, mostly of the diffuse large B-cell lymphoma (DLBCL) type. The present invasive diagnosis and poor prognosis of PCNSL propose an urgent need to develop molecular markers for early detection, real-time monitoring and treatment evaluation. Cerebrospinal fluid (CSF)-derived extracellular vesicles (EVs) are promising biomarker carriers for liquid biopsy of CNS diseases and brain tumors; however, research remains challenging due to the low concentration of EVs in the limited available volume of CSF from each individual patient and the low efficiency of existing methods for EV enrichment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!