AI Article Synopsis

  • Preeclampsia (PE) is linked to higher levels of fetal hemoglobin (HbF) in maternal circulation, prompting a study comparing HbF in umbilical cord blood from PE and normotensive pregnancies.
  • The analysis showed that both arterial and venous umbilical cord blood had higher HbF levels in PE pregnancies compared to normotensive ones, particularly in venous blood.
  • Results suggest that the increase in HbF during PE is primarily due to placental contributions rather than differences related to fetal gender.

Article Abstract

Preeclampsia (PE) is associated with increased fetal hemoglobin (HbF) in the maternal circulation but its source is unknown. To investigate whether excessive HbF is produced in the placenta or the fetus, the concentration of HbF (cHbF) in the arterial and venous umbilical cord blood (UCB) was compared in 15825 normotensive and 444 PE pregnancies. The effect of fetal gender on cHbF was also evaluated in both groups. Arterial and venous UCB sampled immediately after birth at 36-42 weeks of gestation were analyzed for total Hb concentration (ctHb) (g/L) and HbF% using a Radiometer blood gas analyzer. Non-parametric tests were used for statistical comparison and P values < 0.05 were considered significant. Our results indicated higher cHbF in venous compared to arterial UCB in both normotensive (118.90 vs 117.30) and PE (126.75 vs 120.12) groups. In PE compared to normotensive pregnancies, a significant increase was observed in arterial and venous ctHb (171.00 vs 166.00 and 168.00 vs 163.00, respectively) while cHbF was only significantly increased in venous UCB (126.75 vs 118.90). The pattern was similar in both genders. These results indicate a substantial placental contribution to HbF levels in UCB, which increases in PE and is independent of fetal gender, suggesting the elevated cHbF evident in PE results from placental dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409527PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176697PLOS

Publication Analysis

Top Keywords

arterial venous
12
fetal hemoglobin
8
umbilical cord
8
cord blood
8
normotensive pregnancies
8
fetal gender
8
venous ucb
8
chbf
5
venous
5
ucb
5

Similar Publications

Right ventricular myocardial infarction (RVMI) is a significant and distinct form of acute myocardial infarction associated with considerable morbidity and mortality. It occurs most commonly due to proximal right coronary artery obstruction, often in conjunction with inferior myocardial infarction. RVMI poses unique diagnostic and therapeutic challenges due to the anatomical and functional differences between the right and left ventricles.

View Article and Find Full Text PDF

Case: We present the case of a 24-year-old woman who sustained a left midshaft clavicle fracture with acute subclavian artery compression, subclavian vein laceration, and complete brachial plexus palsy after a motor vehicle collision. The patient underwent urgent open reduction internal fixation of the clavicle and repair of the subclavian vein. Two years later, she underwent opponensplasty and flexor digitorum profundus tendon transfers.

View Article and Find Full Text PDF

Variations in cerebral blood flow and blood volume interact with intracranial pressure and cerebrospinal fluid dynamics, all of which play a crucial role in brain homeostasis. A key physiological modulator is respiration, but its impact on cerebral blood flow and volume has not been thoroughly investigated. Here we used 4D flow MRI in a population-based sample of 65 participants (mean age = 75 ± 1) to quantify these effects.

View Article and Find Full Text PDF

Purpose Of Review: What is the pathophysiology and clinical findings as well as management of patients presenting with INOCA/MINOCA (Ischemia/Myocardial Infarction with Non-Obstructive Coronary Arteries).

Recent Findings: INOCA/MINOCA has a complex pathophysiology. In this review article, we aim to summarize the complex pathophysiology and clinical diagnosis, and review the current management options.

View Article and Find Full Text PDF

Accuracy of two-compartment modelling of gas exchange with ventilation-perfusion mismatch in inhalational anesthesia.

Anesthesiology

January 2025

Department of Critical Care, Melbourne Medicine School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.

Background: Multi-compartment computer models of heterogeneity in alveolar ventilation-perfusion ratios (VA/Q scatter) across the lung explain the significant alveolar-arterial (A-a) partial pressure gradients and associated alveolar dead-space fractions (VDA/VA) seen in anesthetized patients for both carbon dioxide and for anesthetic gases of different blood solubilities. However, the accuracy of a simpler two-compartment model of VA/Q scatter to do this has not been tested or compared to calculations from the traditional Riley model with "ideal", unventilated (shunt) and unperfused (deadspace) compartments.

Methods: Measurements of gas partial pressures in inspired and expired gas and arterial and mixed venous blood from 29 patients undergoing inhalational general anesthesia for cardiac surgery was used to compare the accuracy of two simple models of VA/Q scatter and lung gas exchange in predicting measured alveolar and arterial partial pressure differences, and associated alveolar dead-space calculations for the modern anesthetic gases isoflurane, sevoflurane and desflurane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!