Ovarian cancer is particularly aggressive once it has metastasized to the abdominal cavity (stage III). Intraperitoneal (IP) as compared to intravenous (IV) administration of chemotherapy improves survival for stage III ovarian cancer, demonstrating that concentrating chemotherapy at tumor sites has therapeutic benefit; unfortunately, IP therapy also increases toxic side effects, thus preventing its completion in many patients. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities. We have previously shown that tumor-tropic neural stem cells (NSCs) dramatically improve the intratumoral distribution of nanoparticles (NPs) when given intracerebrally near an orthotopic brain tumor or into a flank xenograft tumor. Here, we show that NPs either conjugated to the surface of NSCs or loaded within the cells are selectively delivered to and distributed within ovarian tumors in the abdominal cavity following IP injection, with no evidence of localization to normal tissue. IP administration is significantly more effective than IV administration, and NPs carried by NSCs show substantially deeper penetration into tumors than free NPs. The NSCs and NPs target and localize to ovarian tumors within 1 h of administration. Pt-loaded silica NPs (SiNP[Pt]) were developed that can be transported in NSCs, and it was found that the NSC delivery of SiNP[Pt] (NSC-SiNP[Pt]) results in higher levels of Pt in tumors as compared to free drug or SiNP[Pt]. To the best of our knowledge, this work represents the first demonstration that cells given IP can target the delivery of drug-loaded NPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515227PMC
http://dx.doi.org/10.1021/acs.bioconjchem.7b00237DOI Listing

Publication Analysis

Top Keywords

ovarian tumors
16
neural stem
8
ovarian cancer
8
abdominal cavity
8
stage iii
8
normal tissue
8
nps
7
ovarian
6
tumors
6
nscs
5

Similar Publications

Graphical models are powerful tools to investigate complex dependency structures in high-throughput datasets. However, most existing graphical models make one of two canonical assumptions: (i) a homogeneous graph with a common network for all subjects or (ii) an assumption of normality, especially in the context of Gaussian graphical models. Both assumptions are restrictive and can fail to hold in certain applications such as proteomic networks in cancer.

View Article and Find Full Text PDF

Hypothesis: To evaluate how comorbidities affect mortality benefits of lung cancer screening (LCS) with low-dose computed-tomography (LDCT).

Methods: We developed a comorbidity index (PLCO-ci) using LCS-eligible participants' data from the Prostate Lung Colorectal and Ovarian (PLCO) trial (training set) and the National Lung Screening Trial (NLST) (validation set). PLCO-ci predicts 5-year non-lung cancer (LC) mortality using a regularized Cox model; with performance evaluated by the area under the ROC curve (ROC).

View Article and Find Full Text PDF

Clear cell borderline ovarian tumor: A retrospective study and literature review.

Eur J Obstet Gynecol Reprod Biol

January 2025

Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Clinical Research Center for Obstetric & Gynecologic Diseases, China. Electronic address:

Objective: Clear cell borderline ovarian tumor is a rare subtype of borderline ovarian tumor for which the clinicopathological characteristics, management, and prognosis remain unclear. Herein, we describe the clinical features, treatment options, and prognosis of clear cell borderline ovarian tumors.

Study Design: This was a retrospective study of nine patients with pathologically confirmed clear cell borderline ovarian tumors treated at Peking Union Medical College Hospital between 2006 and 2023.

View Article and Find Full Text PDF

Regulation of Age-Related Lipid Metabolism in Ovarian Cancer.

Int J Mol Sci

January 2025

Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA.

The mortality rate of ovarian cancer (OC) remains the highest among female gynecological malignancies. Advanced age is the highest risk factor for OC development and progression, yet little is known about the role of the aged tumor microenvironment (TME). We conducted RNA sequencing and lipidomic analysis of young and aged gonadal adipose tissue from rat xenografts before and after OC formation.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!