The weakly coordinating binary macropolyhedral anion closo,closo-[BH] (B21; D symmetry) has been synthesized using a simplified strategy compared to that in the literature. While gas-phase complexes of B21 with β- and γ-cyclodextrin (CD) were detected using ESI FT-ICR spectrometric measurements, α-CD did not bind to the B21 guest. This spectroscopic evidence has been interpreted using quantum-chemical computations, showing that β- and γ-CD are able to interact with B21 due to their larger cavities, in contrast to the smaller α-CD. The hydridic B-H vectors of the B21 anion interact with K counterions and, via dihydrogen bonding, also with the partially positively charged hydrogens of the CD sugar units in the modeled β- and γ-CD complexes. In summary, it has been shown by combined spectrometric/computational analysis that macropolyhedral boron hydride anions with two counterions can form stable complexes with β- and γ-CD in the gas phase, offering a new perspective for the future investigation of this remarkable anion in the areas of supramolecular and medicinal chemistries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp01074eDOI Listing

Publication Analysis

Top Keywords

β- γ-cd
12
b21
5
binary twinned-icosahedral
4
twinned-icosahedral [bh]
4
[bh] interacts
4
interacts cyclodextrins
4
cyclodextrins precedent
4
precedent complexation
4
complexation organic
4
organic motifs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!