In this study, novel chitosan-g-itaconic acid/bentonite (CTS-g-IA/BT) and chitosan/bentonite (CTS/BT) nanocomposites were synthesized for adsorption of methylene blue (MB) from aqueous solution. The process was pH-sensitive and maximum sorption was obtained at pH 6 (CTS-g-IA/BT) and 7 (CTS/BT) in 76 h agitation time using 0.03 g of nanocomposites for 50 mL of MB solution. The results showed that in pH less than 6, the adsorption capacity of CTS-g-IA/BT nanocomposite due to the existence of IA monomer is less than that of CTS/BT nanocomposite. The Fourier transform infrared spectroscopy (FTIR) spectrum of CTS-g-IA/BT revealed that both itaconic acid and BT present in the nanocomposite structure, and also the -OH groups of BT, -NH and -OH of CTS participated in nanocomposite formation. According to the FTIR results, a schematic diagram of the nanocomposite synthesis was presented. The kinetic results indicated that the adsorption of MB fitted well with the pseudo-second-order kinetic model. The equilibrium data followed Langmuir isotherm with the maximum adsorption capacity of 500 and 181.818 mg/g for CTS-g-IA/BT and CTS/BT nanocomposites, respectively. The negative values of Gibbs free energy change (ΔG) and the positive values of ΔH confirmed that the adsorption process is spontaneous and endothermic. The positive values of ΔS suggested the randomness of adsorption at interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2017.077 | DOI Listing |
Dalton Trans
January 2025
Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.
View Article and Find Full Text PDFLangmuir
January 2025
Center for Environmental Process Engineering, Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
Precise prediction of adsorption in a multicomponent system is vital for successful design of dye-contaminated industrial wastewater treatment processes. The present work looks for the reason behind the failure of the competitive Langmuir model (CLM) to describe adsorption in such systems, while the Langmuir model (LM) successfully describes the process for a single dye solution. With that end, derivations of LM and CLM have been revisited, and a criterion for the universality of active sites has been defined.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Science, Department of Chemistry, Ege University, İzmir 35100, Turkey.
A novel environmentally friendly adsorbent, poly(limonene--divinylbenzene--2-acrylamido-2-methyl-1-propanesulfonic acid, LIM--DVB--AMPS), was synthesized and applied for the adsorption of methylene blue from aqueous solutions in this study. The structure, morphology, and thermal stability of the green adsorbent were determined by the FTIR, SEM, TGA/DTA/DTG, and BET techniques, ζ potential, and elemental analysis. The efficiency of the adsorption process was improved with respect to several experimental conditions, viz.
View Article and Find Full Text PDFDye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:
Early diagnosis of tumors is becoming increasingly important in modern healthcare. As studies have demonstrated, Poly(ADP)ribose polymerase-1 (PARP-1) is overexpressed in more aggressive tumors. Consequently, sensitive detection of PARP-1 activity holds significant practical importance in clinical diagnostics and biomedical research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!