This study aims to evaluate the possibility of using reclaimed municipal wastewater for agricultural purpose. We assessed the validity of municipal wastewater treatment, analyzing its chemical characteristics before and after the biological stabilization by pond treatment (WSP). The reclaimed municipal treated wastewater (TWW) was used to irrigate Cenchrus ciliaris. Experiments were carried out in greenhouse, from July 2013 to July 2014, comparing the effects of TWW with the water normally used for irrigation (tap water, TW) on the growth and flowering parameters of C. ciliaris. During this study, total coliforms, fecal coliforms, Escherichia coli, and Salmonella spp. were detected in TW, TWW, soils and plants under irrigation. Our results evidenced that TWW increased plant growth, producing taller plants with respect to TW. Total coliforms and fecal coliforms in TWW, TW, soils and plants were under the threshold recommended by the World Health Organization (WHO). Salmonella was never found in TW, TWW, or soil and plants irrigated with TWW. The absence of pathogens suggests that the pond treatment is an effective method to reclaim wastewater, lowering biochemical oxygen demand (BOD), chemical oxygen demand (COD) and pathogens. In this respect, TWW can be used as a valid alternative to freshwater for irrigation of fodder species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2017.048 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.
Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.
View Article and Find Full Text PDFWater Res
December 2024
Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China. Electronic address:
As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Civil Engineering and Architecture, Henan University, Kaifeng, China. Electronic address:
Land reclamation from the sea is a common practice to create territorial space and accommodate urbanisation in coastal cities. However, previous studies did not adequately examine the changes in ecosystem service values, the spatial transformation of the ecological network and the ecological resilience at an urban scale in the context of land reclamation. This study uses Macao SAR, a fully urbanised city with two-thirds of its land reclaimed from the sea, as a case study.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China.
Hot in-place recycling (HIR) is a sustainable pavement rehabilitation method. However, it is susceptible to aging processes that can compromise its mechanical properties and long-term performance. This study investigates the effects of thermo-oxidative (TO) and ultraviolet (UV) aging on HIR mixtures.
View Article and Find Full Text PDFNutrients
November 2024
Department of Thematic Studies of Environmental Change, Linköping University, 581 83 Linköping, Sweden.
Background/objectives: Improved global data allow for a new understanding of what impact the food we produce, eat and dispose of has on the environment, human health and Nature's resources. The overall goal is to guide decision-makers and individuals by providing in-depth knowledge about the effects of their dietary preferences on human and environmental health.
Methods: The method is to investigate ways to reduce environmental degradation and to secure healthy food supplies in an urbanizing world, and to quantify the options.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!