Multiparticle quantum interference is critical for our understanding and exploitation of quantum information, and for fundamental tests of quantum mechanics. A remarkable example of multi-partite correlations is exhibited by the Greenberger-Horne-Zeilinger (GHZ) state. In a GHZ state, three particles are correlated while no pairwise correlation is found. The manifestation of these strong correlations in an interferometric setting has been studied theoretically since 1990 but no three-photon GHZ interferometer has been realized experimentally. Here we demonstrate three-photon interference that does not originate from two-photon or single photon interference. We observe phase-dependent variation of three-photon coincidences with (92.7±4.6)% visibility in a generalized Franson interferometer using energy-time entangled photon triplets. The demonstration of these strong correlations in an interferometric setting provides new avenues for multiphoton interferometry, fundamental tests of quantum mechanics, and quantum information applications in higher dimensions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.153602 | DOI Listing |
Phys Rev Lett
November 2024
Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
iScience
August 2024
Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China.
Zebrafish and organoids, crucial for complex biological studies, necessitate an imaging system with deep tissue penetration, sample protection from environmental interference, and ample operational space. Traditional three-photon microscopy is constrained by short-working-distance objectives and falls short. Our long-working-distance high-collection-efficiency three-photon microscopy (LH-3PM) addresses these challenges, achieving a 58% fluorescence collection efficiency at a 20 mm working distance.
View Article and Find Full Text PDFAnal Chem
October 2022
Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.
Herein, we have synthesized a series of three-photon fluorescent Pt(II) complexes targeting a tumor-associated biothiol, cysteine (Cys), which allows it to be detected without any interference from other intracellular proteins. We focused on how to significantly improve the fluorescence response of Cys regulating the recognition units in probes. The reaction of KPtCl with or in DMSO solution gave and , respectively, which present four-coordinated square-planar geometries in mononuclear structures.
View Article and Find Full Text PDFAnal Chim Acta
April 2022
Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540: 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. Electronic address:
In most cases, a molecular ion is observed in femtosecond laser ionization mass spectrometry, which provides information concerning the molecular weight of the analyte. However, the Ti:sapphire laser currently used as the ionization source is costly and involves special skills for operation and maintenance, which prevents its practical use in many applications. In this study, we report on the development of a miniature time-of-flight mass analyzer with a flight tube length of 65 mm for use in combination with a compact highly-repetitive (120-560 kHz) femtosecond Yb laser and a time-correlated single ion counting system.
View Article and Find Full Text PDFNanoscale
May 2021
Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China and Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Two-dimensional materials, such as transition metal dichalcogenides (TMDs), exhibit intriguing physical properties that lead to both fundamental research and technology development. The recently emerged platinum diselenide (PtSe2), as a new member of the TMDs, has attracted increasing attention because of its good air stability, large refractive index and high electron mobility. However, being atomically thin significantly hinders its interaction with light, severely limiting the spontaneous or stimulated linear and nonlinear emission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!