Loading catalytically active, aggregation-free and thermally stable metal nanoparticles (NPs) on a high surface area support represents a major interest in heterogeneous catalysis. Current synthetic approaches to these hybrid catalysts, however, still lack controllability in the thermal stability of metal NPs, particularly at high temperatures in the absence of organic ligands. We herein report a facile "co-assembly" methodology to prepare aggregation-free, ligand-free and thermally stable mesoporous hybrid nanocatalysts of metal-oxides and metal-carbons. Immobilization of catalytically active gold NPs (AuNPs) within high surface area mesoporous frameworks was achieved via the polymer-directed co-assembly of chemically and structurally equivalent Pluronic P-123 and poly(ethylene oxide)-modified metallic gold NPs (AuNP-PEO) as co-structure-directing-agents. The in situ immobilization of AuNPs partially embedded into periodically ordered mesoporous frameworks imposed a three-dimensional "nanoconfinement" effect and essentially enhanced the long-term thermal stability of AuNPs up to 800 °C. The mesoporous hybrids retained a high surface accessibility of AuNPs and they had a fantastic high-temperature catalytic durability (>130 h at 375 °C) confirmed by two model catalytic reactions, including aerobic oxidation of benzyl alcohol and CO oxidation, respectively. Our results may offer a new realm of possibilities for the rational applications of thermally stable nanocatalysts in renewable energy technology and high-temperature catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr01988bDOI Listing

Publication Analysis

Top Keywords

mesoporous frameworks
12
thermally stable
12
high surface
12
catalytically active
8
nps high
8
surface area
8
thermal stability
8
gold nps
8
mesoporous
5
nanoengineering aggregation-free
4

Similar Publications

A novel magnetic mesoporous fluorinated metal-organic framework material (FeO@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed FeO@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs.

View Article and Find Full Text PDF

Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb.

View Article and Find Full Text PDF

Nanolabels Prepared by the Entrapment or Self-Assembly of Signaling Molecules for Colorimetric and Fluorescent Immunoassays.

Biosensors (Basel)

December 2024

Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.

Nanomaterials have attracted significant attention as signal reporters for immunoassays. They can directly generate detectable signals or release a large number of signaling elements for readout. Among various nanolabels, nanomaterials composed of multiple signaling molecules have shown great potential in immunoassays.

View Article and Find Full Text PDF

2D Flower-like CdS@Co/Mo-MOF as Co-Reaction Accelerator of g-CN-Based Electrochemiluminescence Sensor for Chlorpromazine Hydrochloride.

Biosensors (Basel)

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China.

In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.

View Article and Find Full Text PDF

Tannic acid (TA), as a plant polyphenol, has many active sites for chelation with metals, so TA-oligomers (TA-Olig) were used for the first time as ligands on the surface of Ce-Mn-LDH to prepare the layered double hydroxide-based metal-organic framework (Ce-Mn-LDH@CPTMS@TA-Olig@Co-MOF = E) nanocomposite. In this regard, a homogeneous water/ethanol solution was prepared by sol-gel method using polyethylene glycol and ammonia solution, and then TA was converted into a set of oligomers in the presence of formaldehyde. In the next step, Ce-Mn-LDH was prepared in a ratio of 1 : 4 of Ce to Mn, modified with 3-chloropropylmethoxysilane, functionalized by TA-Olig, and then cobalt salt was used to prepare E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!