The contribution of microbial depolymerase has received much attention because of its potential in biopolymer degradation. In this study, the P(3HB) depolymerase enzyme of a newly isolated Burkholderia cepacia DP1 from soil in Penang, Malaysia, was optimized using response surface methodology (RSM). The factors affecting P(3HB) depolymerase enzyme production were studied using one-variable-at-a-time approach prior to optimization. Preliminary experiments revealed that the concentration of nitrogen source, concentration of carbon source, initial pH and incubation time were among the main factors influencing the enzyme productivity. An increase of 9.4 folds in enzyme production with an activity of 5.66 U/mL was obtained using optimal medium containing 0.028% N of di-ammonium hydrogen phosphate and 0.31% P(3HB-co-21%4HB) as carbon source at the initial pH of 6.8 for 38 h of incubation. Moreover, the RSM model showed great similarity between predicted and actual enzyme production indicating a successful model validation. This study warrants the ability of P(3HB) degradation by B. cepacia DP1 in producing higher enzyme activity as compared to other P(3HB) degraders being reported. Interestingly, the production of P(3HB) depolymerase was rarely reported within genus Burkholderia. Therefore, this is considered to be a new discovery in the field of P(3HB) depolymerase production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428109PMC
http://dx.doi.org/10.1007/s13205-017-0716-7DOI Listing

Publication Analysis

Top Keywords

p3hb depolymerase
16
cepacia dp1
12
enzyme production
12
newly isolated
8
isolated burkholderia
8
burkholderia cepacia
8
depolymerase enzyme
8
carbon source
8
source initial
8
depolymerase
6

Similar Publications

Polyhydroxyalkanoate (PHA) is a highly biodegradable microbial polyester, even in marine environments. In this study, we incorporated an enrichment culture-like approach in the process of isolating marine PHA-degrading bacteria. The resulting 91 isolates were suggested to fall into five genera (, , , , and ) based on 16S rRNA analysis, including two novel genera ( and ) as marine PHA-degrading bacteria.

View Article and Find Full Text PDF

The main aim of the study was to degrade poly-β-hydroxybutyrate (P(3HB)) in the sequencing batch biofilm reactor (SBBR) using biocatalyst. Enrichment method was used for the isolation of P(3HB) degrading bacteria. These bacterial strains were isolated from the wastewater sludge sample treated with P(3HB) sheets.

View Article and Find Full Text PDF

Production of Poly-3-Hydroxybutyrate (P3HB) with Ultra-High Molecular Weight (UHMW) by Mutant Strains of Azotobacter vinelandii Under Microaerophilic Conditions.

Appl Biochem Biotechnol

January 2021

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico.

Poly-3-hydroxybutyrate (P3HB) is a biopolymer, which presents characteristics similar to those of plastics derived from the petrochemical industry. The thermomechanical properties and biodegradability of P3HB are influenced by its molecular weight (MW). The aim of the present study was to evaluate the changes of the molecular weight of P3HB as a function of oxygen transfer rate (OTR) in the cultures using two strains of Azotobacter vinelandii, a wild-type strain OP, and PhbZ1 mutant with a P3HB depolymerase inactivated.

View Article and Find Full Text PDF

Purification and characterization of new bio-plastic degrading enzyme from Burkholderia cepacia DP1.

Protein Expr Purif

March 2019

School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Centre for Chemical Biology, Penang, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, Malaysia. Electronic address:

Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.

View Article and Find Full Text PDF
Article Synopsis
  • T1 lipase, an enzyme with broad substrate specificity, can potentially be modified to degrade semicrystalline P(3HB), similar to the PHA depolymerase PhaZ6Pl.
  • A structural comparison with BSLA lipase, which lacks a lid, led to the design of three T1 lipase variants without the lid, confirmed to effectively degrade P(3HB).
  • Among these variants, D2 exhibited the highest activity, demonstrating that by removing the lid, T1 lipase retains its versatility and can target both triglycerides and P(3HB).
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!