Multi-Algorithm Particle Simulations with Spatiocyte.

Methods Mol Biol

Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.

Published: February 2018

As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7015-5_16DOI Listing

Publication Analysis

Top Keywords

reaction diffusion
8
stochastic particle
8
spatiocyte
5
multi-algorithm particle
4
particle simulations
4
simulations spatiocyte
4
spatiocyte quantitative
4
quantitative biologists
4
biologists measurements
4
measurements spatially
4

Similar Publications

Total population for a resource-limited single consumer model.

J Math Biol

January 2025

Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.

In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.

View Article and Find Full Text PDF

The present study aims to better understand the nature of currently circulating GPV strains and their pathological impact on the immune system during natural outbreaks among different duck breeds in Egypt. For this purpose, 99 ducks (25 flocks) of different breeds, aged 14-75 days, were clinically examined, and 75 tissue pools from the thymus, bursa of Fabricius, and spleen were submitted for virus detection and identification. Clinical and postmortem findings were suggestive of GPV infection.

View Article and Find Full Text PDF

: Since 2008, following clinical studies conducted on children that revealed the ability of the β-adrenergic antagonist propranolol to inhibit capillary growth in infantile hemangiomas (IHs), its oral administration has become the first-line treatment for IHs. Although oral propranolol therapy at a dosage of 3 mg/kg/die is effective, it can cause systemic adverse reactions. This therapy is not necessarily applicable to all patients.

View Article and Find Full Text PDF

Niobium pentoxide (T-NbO) is a promising anode material for dual-ion batteries due to its high lithium capacity and fast ion storage and release mechanism. However, T-NbO suffers from the disadvantages of poor electrical conductivity and fast cycling capacity decay. Herein, a nitrogen-doped three-dimensional porous carbon (RMF) was prepared for loading niobium pentoxide to construct a composite system with excellent electrochemical performance.

View Article and Find Full Text PDF

Diamond-wire sawing silicon waste (DSSW) derived from the silicon wafer sawing process may lead to resource waste and environmental issues if not properly utilized. This paper propounds a simple technique aimed at enhancing the efficiency of hydrogen production from DSSW. The hydrolysis reaction is found to become faster when DSSW is ground.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!