Equid herpesvirus type 1 (EHV-1) is a common viral infection associated with varied clinical outcomes including respiratory disease, abortion and neurological disease. We have characterized EHV-1 sequences (n = 38) obtained from cases of equine abortion in Poland between 1999 and 2016, based on sequencing of PCR products from open reading frames (ORF) 30 and 68 of the EHV-1 genome. The majority (81.6%) of sequences were not classified into any of the previously described groups based on the ORF68 sequence. The remaining sequences belonged to ORF68 group III (7.9%) or IV (10.5%). A haplotype network analysis did not show any obvious structure within networks of local Polish sequences, nor within a global network of 215 EHV-1 sequences when these networks were coloured based on the geographical origin of viruses or date of detection. Our data suggest that ORF68 does not provide a reliable molecular marker for epidemiological studies of EHV-1, at least in a global sense. Its usefulness to aid local investigations of individual outbreaks remains to be established. All but two Polish EHV-1 sequences belonged to the ORF30 N genotype. The two ORF30 D viruses were obtained from abortion cases in 2009 and 2010. Hence, abortion cases that occurred in Poland between 1999 and 2016 were caused predominantly by EHV-1 with the ORF30 N genotype, with no indication of an increase in the prevalence of the ORF30 D variant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506511 | PMC |
http://dx.doi.org/10.1007/s00705-017-3376-3 | DOI Listing |
Sci Rep
January 2025
Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary.
In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.
View Article and Find Full Text PDFVet Res
January 2025
Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Medicine, Surgery, and Reproduction, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco.
This study aimed to investigate the molecular prevalence and genetic characterization of EHV-1 and EHV-4 in equid populations in Morocco. A total of 154 equids (114 horses, 9 donkeys, and 31 mules) were sampled, with nasal swabs and tissue samples subjected to multiplex real-time PCR for the detection of EHV-1 and EHV-4. Additionally, an isolate from the tissue of an aborted horse fetus was included in the analysis.
View Article and Find Full Text PDFViruses
September 2024
Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
Equid alphaherpesvirus 1 (EHV-1) has been linked to the emergence of neurological disorders, with the horse racing industry experiencing significant impacts from outbreaks of equine herpesvirus myeloencephalopathy (EHM). Building robust immune memory before pathogen exposure enables rapid recognition and elimination, preventing infection. This is crucial for effectively managing EHV-1.
View Article and Find Full Text PDFViruses
July 2024
Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
Equine herpesvirus-1 (EHV-1) causes respiratory diseases, abortion, and encephalomyelitis in horses. The EHV-1 immediate-early (IE) protein, essential for viral replication, is transactivated by the binding of a multiprotein complex including the open reading frame 12 (ORF12) and some host factors to the IE promoter region. Promoter-associated non-coding RNAs (pancRNAs), which are transcribed from bidirectional promoters, regulate the transcription of neighboring genes in mammals and pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!