In the field of novel applications involving upconverting processes, the determination of new strategies for realizing emission-tunable nanomaterials is a challenge. In this work the design of Y and Er codoped bismuth oxide-based upconverting nanoparticles is presented, evidencing that the active role of the matrix allows for the emission selectivity with chromaticity control. The bandgap of the bismuth oxide-based host can be manipulated in the range of 0.65 eV, consequently leading to upconversion emission color tunability from red to yellow-greenish. The resulting fine control of the nanoparticle chromaticity through accurate host bandgap engineering reveals a novel concept for the development of a new generation of upconverting nanophosphors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr09350g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!