Quantitative self-powered electrochromic biosensors.

Chem Sci

Instituto de Microelectrónica de Barcelona , IMB-CNM (CSIC) , Campus de la Universidad Autónoma , Esfera UAB , 08193-Bellaterra , Barcelona , Spain . Email: ; Tel: +34 935947700.

Published: March 2017

Self-powered sensors are analytical devices able to generate their own energy, either from the sample itself or from their surroundings. The conventional approaches rely heavily on silicon-based electronics, which results in increased complexity and cost, and prevents the broader use of these smart systems. Here we show that electrochromic materials can overcome the existing limitations by simplifying device construction and avoiding the need for silicon-based electronics entirely. Electrochromic displays can be built into compact self-powered electrochemical sensors that give quantitative information readable by the naked eye, simply controlling the current path inside them through a combination of specially arranged materials. The concept is validated by a glucose biosensor coupled horizontally to a Prussian blue display designed as a distance-meter proportional to (glucose) concentration. This approach represents a breakthrough for self-powered sensors, and extends the application of electrochromic materials beyond smart windows and displays, into sensing and quantification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398271PMC
http://dx.doi.org/10.1039/c6sc04469gDOI Listing

Publication Analysis

Top Keywords

self-powered sensors
8
silicon-based electronics
8
electrochromic materials
8
quantitative self-powered
4
electrochromic
4
self-powered electrochromic
4
electrochromic biosensors
4
biosensors self-powered
4
sensors analytical
4
analytical devices
4

Similar Publications

Robust and ultra-thin nanocellulose/MXene composite film and its performance in efficient electricity-generation and sensing.

Int J Biol Macromol

December 2024

Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:

The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.

View Article and Find Full Text PDF

With the increasing demand for food safety monitoring, the development of efficient, convenient, and green gas sensors has become a current research hotspot. Triboelectric nanogenerator (TENG) as a triethylamine sensor is a cutting-edge strategy for detection without the need for an additional power source. In this study, synthesized WO/MXene materials were prepared and bilayer thin films of carbon quantum dots (CPDs)-WO/MXene TENG.

View Article and Find Full Text PDF

High-Quality SnSe Thin Films for Self-Powered Devices and Multilevel Information Encryption.

ACS Appl Mater Interfaces

December 2024

School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China.

As semiconductor technology advances toward miniaturization and portability, thin films with excellent thermoelectric performance have garnered increasing attention, particularly for applications in self-powered devices and temperature-responsive sensors. The high Seebeck coefficient of SnSe thin films makes them promising for temperature sensing, but their poor electrical conductivity limits their potential as thermoelectric generators. In this work, high-quality -axis oriented SnSe thin films were deposited on quartz substrates by using magnetron sputtering.

View Article and Find Full Text PDF

Textile-Based TENG Woven with Fluorinated Polyimide Yarns for Motion and Position Monitoring.

ACS Appl Mater Interfaces

December 2024

School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.

Polyimide-based triboelectric nanogenerators (TENGs) capable of energy harvesting in harsh environments (high temperature and high humidity) have been extensively studied. However, most polyimide-based TENGs have the disadvantages of poor air permeability and poor softness. In this study, a core-shell yarn with good air permeability, softness, and high electric output performance was successfully prepared by conjugate electrospinning.

View Article and Find Full Text PDF

Artificial ionic nanochannels with light perception capabilities hold promise for creating ionic devices. Nevertheless, most research primarily focuses on regulating single nanochannels, leaving the cumulative effect of numerous nanochannels and their integration underexplored. We herein develop a biomimetic photoreceptor based on photoresponsive highly aligned nanochannels (pHANCs), which exhibit uniform channel heights, phototunable surface properties, and excellent compatibility with microfabrication techniques, enabling the scalable fabrication and integration into functional ionic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!