Proximal distal heme-NO coordination is a novel strategy for selective gas response in heme-based NO-sensors. In the case of cytochrome c' (AXCP), formation of a transient distal 6cNO complex is followed by scission of the Fe-His bond and conversion to a proximal 5cNO product a putative dinitrosyl species. Here we show that replacement of the AXCP distal Leu16 residue with smaller or similar sized residues (Ala, Val or Ile) traps the distal 6cNO complex, whereas Leu or Phe residues lead to a proximal 5cNO product with a transient or non-detectable distal 6cNO precursor. Crystallographic, spectroscopic, and kinetic measurements of 6cNO AXCP complexes show that increased distal steric hindrance leads to distortion of the Fe-N-O angle and flipping of the heme 7-propionate. However, it is the kinetic parameters of the distal NO ligand that determine whether 6cNO or proximal 5cNO end products are formed. Our data support a 'balance of affinities' mechanism in which proximal 5cNO coordination depends on relatively rapid release of the distal NO from the dinitrosyl precursor. This mechanism, which is applicable to other proteins that form transient dinitrosyls, represents a novel strategy for 5cNO formation that does not rely on an inherently weak Fe-His bond. Our data suggest a general means of engineering selective gas response into biologically-derived gas sensors in synthetic biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390784 | PMC |
http://dx.doi.org/10.1039/c6sc04190f | DOI Listing |
Biophys J
August 2024
Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom; School of Life Sciences, University of Essex, Colchester, United Kingdom.
Cytochromes c'-α are nitric oxide (NO)-binding heme proteins derived from bacteria that can thrive in a wide range of temperature environments. Studies of mesophilic Alcaligenes xylosoxidans cytochrome c'-α (AxCP-α) have revealed an unusual NO-binding mechanism involving both heme faces, in which NO first binds to form a distal hexa-coordinate Fe(II)-NO (6cNO) intermediate and then displaces the proximal His to form a proximal penta-coordinate Fe(II)-NO (5cNO) final product. Here, we characterize a thermally stable cytochrome c'-α from thermophilic Hydrogenophilus thermoluteolus (PhCP-α) to understand how protein thermal stability affects NO binding.
View Article and Find Full Text PDFChem Sci
March 2017
School of Biological Sciences , University of Essex, Wivenhoe Park , Colchester , Essex CO4 3SQ , UK . Email:
Proximal distal heme-NO coordination is a novel strategy for selective gas response in heme-based NO-sensors. In the case of cytochrome c' (AXCP), formation of a transient distal 6cNO complex is followed by scission of the Fe-His bond and conversion to a proximal 5cNO product a putative dinitrosyl species. Here we show that replacement of the AXCP distal Leu16 residue with smaller or similar sized residues (Ala, Val or Ile) traps the distal 6cNO complex, whereas Leu or Phe residues lead to a proximal 5cNO product with a transient or non-detectable distal 6cNO precursor.
View Article and Find Full Text PDFBiochemistry
June 2015
‡School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.
Five-coordinate heme nitrosyl complexes (5cNO) underpin biological heme-NO signal transduction. Bacterial cytochromes c' are some of the few structurally characterized 5cNO proteins, exhibiting a distal to proximal 5cNO transition of relevance to NO sensing. Establishing how 5cNO coordination (distal vs proximal) depends on the heme environment is important for understanding this process.
View Article and Find Full Text PDFJ Am Chem Soc
February 2013
Laboratoire d'Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
We provide a direct demonstration of a "kinetic trap" mechanism in the proximal 5-coordinate heme-nitrosyl complex (5c-NO) of cytochrome c' from Alcaligenes xylosoxidans (AXCP) in which picosecond rebinding of the endogenous His ligand following heme-NO dissociation acts as a one-way gate for the release of proximal NO into solution. This demonstration is based upon picosecond transient absorption changes following NO photodissociation of the proximal 5c-NO AXCP complex. We have determined the absolute transient absorption spectrum of 4-coordinate ferrous heme to which NO rebinds with a time constant τ(NO) = 7 ps (k(NO) = 1.
View Article and Find Full Text PDFJ Biol Chem
February 2012
Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France.
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!