Antibody fragments as nanoparticle targeting ligands: a step in the right direction.

Chem Sci

Department of Chemistry , University College London, 20 Gordon Street , London , WC1H 0AJ , UK . Email: ; Email: ; Tel: +44 (0)207 679 2077.

Published: January 2017

Recent advances in nanomedicine have shown that dramatic improvements in nanoparticle therapeutics and diagnostics can be achieved through the use of disease specific targeting ligands. Although immunoglobulins have successfully been employed for the generation of actively targeted nanoparticles, their use is often hampered by the suboptimal characteristics of the resulting complexes. Emerging data suggest that a switch in focus from full antibodies to antibody derived fragments could help to alleviate these problems and expand the potential of antibody-nanoparticle conjugates as biomedical tools. This review aims to highlight how antibody derived fragments have been utilised to overcome both fundamental and practical issues encountered during the design and application of antibody-targeted nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304706PMC
http://dx.doi.org/10.1039/c6sc02403cDOI Listing

Publication Analysis

Top Keywords

targeting ligands
8
antibody derived
8
derived fragments
8
antibody fragments
4
fragments nanoparticle
4
nanoparticle targeting
4
ligands step
4
step direction
4
direction advances
4
advances nanomedicine
4

Similar Publications

Detection of Putative Ligand Dissociation Pathways in Proteins Using Site-Identification by Ligand Competitive Saturation.

J Chem Inf Model

December 2024

Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.

Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.

View Article and Find Full Text PDF

Enhanced Sampling with Suboptimal Collective Variables: Reconciling Accuracy and Convergence Speed.

J Chem Theory Comput

December 2024

School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland.

We introduce an enhanced sampling algorithm to obtain converged free energy landscapes of molecular rare events, even when the collective variable (CV) used for biasing is not optimal. Our approach samples a time-dependent target distribution by combining the on-the-fly probability enhanced sampling and its exploratory variant, OPES Explore. This promotes more transitions between the relevant metastable states and accelerates the convergence speed of the free energy estimate.

View Article and Find Full Text PDF

Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood.

View Article and Find Full Text PDF

Tuberculosis (TB) is a global health challenge associated with considerable levels of illness and mortality worldwide. The development of innovative therapeutic strategies is crucial to combat the rise of drug-resistant TB strains. DNA Gyrase A (GyrA) and serine/threonine protein kinase (PknB) are promising targets for new TB medications.

View Article and Find Full Text PDF

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!