The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel-zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel-zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DOD) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DOD at lithium-ion-commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aak9991 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!