G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of G Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin as well as by wortmannin but not by AG1478, indicating that G and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two G-mediated mechanisms, a PDZ-dependent, apparently constitutive mechanism and a PDZ-independent G-1-stimulated mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473245 | PMC |
http://dx.doi.org/10.1074/jbc.M116.765875 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Pu-Er Tea Science, Ministry of Education, Yunnan Agricultural University, Heilongtan, North of Kunming, Kunming 650201, China.
Lung cancer is the leading cause of cancer-related death. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and over 60% express wild-type EGFR (WT-EGFR); however, EGFR tyrosine kinase inhibitors (TKIs) have limited effect in most patients with WT-EGFR tumors. In this study, we applied network pharmacology screening and MTT screening of bioactive compounds to obtain one novel grifolic acid that may inhibit NSCLC through the EGFR-ERK1/2 pathway.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Upon exposure to inflammatory stimuli including TNF-α, endothelial cells are activated leading to the adhesion of monocytes to their surface. These events are involved in the pathophysiology of atherosclerosis. Since TNF-α activates the NF-κB pathway, which contributes to atherosclerosis, targeting this signaling pathway may help prevent the risk of developing the disease.
View Article and Find Full Text PDFIcariin (ICA) serves as the primary biologically active compound in traditional Chinese medicine Epimedium, while Icariside II (ICSII) represents one of its gastrointestinal metabolites. Although ICA and ICSII have demonstrated osteogenic differentiation- promoting effects on BMSCs, there is limited literature comparing their effects and underlying mechanisms. This study aimed to compare the osteogenic effects of Icariin and Icariside II, along with their respective osteogenic mechanisms.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
Objective: The aim of the present study was to determine the effects of selenium-methylselenocysteine (MSC) on the viability, migration, and glycolysis of human ATC cell lines 8305 and BHT101 .
Methods: Cells were treated with MSC and viability was determined using the Cell Counting Kit 8 assay. The migratory ability of cells was detected using a Transwell migration assay, and the expression levels of proteins involved in the ERK1/2, JNK, and p38 signaling pathways were measured by western blotting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!