The event-related potential, mismatch negativity (MMN), has been touted as a robust and specific neurophysiological biomarker of schizophrenia. Earlier studies often included bipolar disorder (BD) as a clinical comparator and reported that MMN was significantly impaired only in schizophrenia. However, with the increasing number of MMN studies of BD (with larger sample sizes), the literature is now providing somewhat consistent evidence of this biomarker also being perturbed in BD, albeit to a lesser degree than that observed in schizophrenia. Indeed, two meta-analyses have now shown that the effect sizes in BD samples suggest a moderate impairment in MMN, compared to the large effect sizes shown in schizophrenia. Pharmacologically, MMN is an extremely useful non-invasive probe of glutamatergic (more specifically, N-methyl-d-aspartate [NMDA] receptor) disturbances and this system has been implicated in the pathophysiology of both schizophrenia and BD. Therefore, it may be best to conceptualize/utilize MMN as an index of a psychopathology that is shared across psychotic and related disorders, rather than being a diagnosis-specific biomarker. More research is needed, particularly longitudinal designs including studies that assess MMN over an individual's life course and then examine NMDA receptor expression/binding post-mortem. At this point and despite a disproportionate amount of research, the current evidence suggests that with respect to BD, MMN is a neurophysiological biomarker of intermediate effect. With replication and validation of this effect, MMN may prove to be an important indicator of a common psychopathology shared by a significant proportion of individuals with schizophrenia and bipolar spectrum illnesses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2017.04.026DOI Listing

Publication Analysis

Top Keywords

neurophysiological biomarker
12
mmn
9
mismatch negativity
8
bipolar disorder
8
biomarker intermediate
8
psychopathology shared
8
schizophrenia
6
biomarker
5
negativity bipolar
4
disorder neurophysiological
4

Similar Publications

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

Background: Recent studies have demonstrated a greater risk of dementia in female veterans compared to civilians; with the highest prevalence noted for former service women with a diagnosis of psychiatric (trauma, alcoholism, depression), and/or a physical health condition (brain injury, insomnia, diabetes). Such findings highlight the need for increased and early screening of medical and psychiatric conditions, and indeed dementia, in the female veteran population. Further, they call for a better understanding of the underlying biopsychosocial mechanisms that might confer heightened risk for female veterans, to tailor preventative and interventional strategies that support brain health across the lifespan.

View Article and Find Full Text PDF

Recruitment input-output curves of transspinal evoked potentials that represent the net output of spinal neuronal networks during which cortical, spinal and peripheral inputs are integrated as well as motor evoked potentials and H-reflexes are used extensively in research as neurophysiological biomarkers to establish physiological or pathological motor behavior and post-treatment recovery. A comparison between different sigmoidal models to fit the transspinal evoked potentials recruitment curve and estimate the parameters of physiological importance has not been performed. This study sought to address this gap by fitting eight sigmoidal models (Boltzmann, Hill, Log-Logistic, Log-Normal, Weibull-1, Weibull-2, Gompertz, Extreme Value Function) to the transspinal evoked potentials recruitment curves of soleus and tibialis anterior recorded under four different cathodal stimulation settings.

View Article and Find Full Text PDF

Maximizing the translational potential of neurophysiology in amyotrophic lateral sclerosis: a study on compound muscle action potentials.

Amyotroph Lateral Scler Frontotemporal Degener

January 2025

Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK and.

Mouse models of amyotrophic lateral sclerosis (ALS) enable testing of novel therapeutic interventions. However, treatments that have extended survival in mice have often failed to translate into human benefit in clinical trials. Compound muscle action potentials (CMAPs) are a simple neurophysiological test that measures the summation of muscle fiber depolarization in response to maximal stimulation of the innervating nerve.

View Article and Find Full Text PDF

Comprehensive assessment reveals numerous clinical and neurophysiological differences between MECP2-allelic disorders.

Ann Clin Transl Neurol

January 2025

Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.

Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!