During wine fermentations, Saccharomyces cerevisiae starts to excrete antimicrobial peptides (AMPs) into the growth medium that induce death of non-Saccharomyces yeasts at the end of exponential growth phase (24-48 h). Those AMPs were found to derive from the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). On the other hand, the early death of non-Saccharomyces yeasts during wine fermentations was also found to be mediated by a cell-to-cell contact mechanism. Since GAPDH is a cell-wall-associated protein in S. cerevisiae, we put forward the hypothesis that the GAPDH-derived AMPs could accumulate on the cell surface of S. cerevisiae, thus inducing death of non-Saccharomyces yeasts by cell-to-cell contact. Here we show that 48-h grown (stationary phase) cells of S. cerevisiae induce death of Hanseniaspora guilliermondii and Lachancea thermotolerans by direct cell-to-cell contact, while 12-h grown cells (mid-exponential phase) do not. Immunological tests performed with a specific polyclonal antibody against the GAPDH-derived AMPs revealed their presence in the cell wall of S. cerevisiae cells grown for 48 h, but not for 12 h. Taken together, our data show that accumulation of GAPDH-derived AMPs on the cell surface of S. cerevisiae is one of the factors underlying death of non-Saccharomyces yeasts by cell-to-cell contact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fix055 | DOI Listing |
J Appl Microbiol
April 2024
Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy.
Aims: Yeast interactions have a key role in the definition of the chemical profile of the wines. For this reason, winemakers are increasingly interested in mixed fermentations, employing Saccharomyces cerevisiae and non-Saccharomyces strains. However, the outcome of mixed fermentations is often contradictory because there is a great variability among strains within species.
View Article and Find Full Text PDFFood Res Int
September 2019
Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France. Electronic address:
The development of new fermented foods and beverages requires more and more the use of new dehydrated yeasts species. In this context, the non-Saccharomyces (NS) yeasts Torulaspora delbrueckii, Metschnikowia pulcherrima and Lachancea thermotolerans are developed especially in winemaking as co-culture in the fermentation of the must or for the must bioprotection. However, during formulation-dehydration the yeast cells are exposed to several stresses that reduce cellular activity.
View Article and Find Full Text PDFFood Microbiol
October 2019
UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.
Nitrogen is an essential nutrient for yeast during alcoholic fermentation. Nitrogen is involved in the biosynthesis of protein, amino acids, nucleotides, and other metabolites, including volatile compounds. However, recent studies have called several mechanisms that regulate its role in biosynthesis into question.
View Article and Find Full Text PDFInt J Food Microbiol
January 2019
Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy. Electronic address:
The use of mixed culture fermentations with selected Starmerella bacillaris and Saccharomyces cerevisiae strains is gaining winemaking attention, mainly due to their ability to enhance particular characteristics in the resulting wines. In this context, yeast interspecies interactions during fermentation have a fundamental role to determine the desired product characteristics, since they may modulate yeast growth and as a consequence metabolite production. In order to get an insight into these interactions, the growth and death kinetics of the abovementioned species were investigated in pure and mixed culture fermentations, using cv.
View Article and Find Full Text PDFFood Res Int
September 2018
Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridona St., Athens 12210, Greece.
The performance of two vineyard strains, Saccharomyces cerevisiae SacPK7 and Starmerella bacillaris StbPK9, was evaluated in laboratory and pilot scale fermentations of Cretan grape must under the following inoculation schemes: single inoculation of SacPK7 (IS), simultaneous inoculation of StbPK9 and SacPK7 (SM), and sequential inoculation of StbPK9 followed by SacPK7 (SQ). Un-inoculated (spontaneous) fermentations (SP) and fermentations inoculated with control S. cerevisiae strains (CS) were also conducted as reference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!