Perinatal hypoxic-ischemic brain injury is a major health problem. Adjuvant treatments that improve the neuroprotective effect of the current treatment, therapeutic hypothermia, are urgently needed. The growing knowledge about the complex pathophysiology of hypoxia-ischemia (HI) has led to the discovery of several important targets for neuroprotection. Early interventions should focus on the preservation of energy metabolism, the reduction of glutamate excitotoxicity and oxidative stress, the maintenance of calcium homeostasis, and the prevention of apoptosis. Delayed interventions should promote injury repair. The multiple metabolic changes following HI as well as the metabolic effects of potential treatments can be observed noninvasively by magnetic resonance spectroscopy (MRS). This mini-review provides an overview of the neuroprotective pharmacological agents that have been evaluated with 1H/31P/13C MRS. A better understanding of how these agents influence cerebral metabolism and the use of relevant translational MRS biomarkers can guide future clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000472709DOI Listing

Publication Analysis

Top Keywords

perinatal hypoxic-ischemic
8
hypoxic-ischemic brain
8
brain injury
8
magnetic resonance
8
resonance spectroscopy
8
neuroprotective treatments
4
treatments perinatal
4
injury evaluated
4
evaluated magnetic
4
spectroscopy perinatal
4

Similar Publications

Novel Insights In presence of cardiotocographic features suspected for hypoxic insult, intrapartum ultrasound in the hands of experienced operators can demonstrate cerebral edema as an indirect sign of fetal hypoxia affecting the fetal CNS and exclude non-hypoxic conditions potentially leading to abnormalities of the fetal heart rate. Introduction Hypoxic-ischemic encephalopathy is a syndrome involving the fetal central nervous system as the result of a perinatal hypoxic-ischemic injury. To date, transfontanellar ultrasound represents the first line exam in neonates with clinical suspicion of HIE as it allows to show features indicating acute hypoxic injury and exclude potential non-hypoxic determinants of HIE, however there is no report concerning the sonographic assessment of the brain during labor.

View Article and Find Full Text PDF

Objective: To assess variability among data elements collected among existing neonatal hypoxic-ischemic encephalopathy (HIE) data registries worldwide and to determine the need for future harmonization of standard common data elements.

Study Design: This was a cross-sectional study of data elements collected from current or recently employed HIE registry data forms. Registries were identified by literature search and email inquiries to investigators worldwide.

View Article and Find Full Text PDF

: Hypoxic-ischemic encephalopathy (HIE) in late preterm and term neonates accounts for neonatal mortality and unfavorable neurodevelopmental outcomes in survivors despite therapeutic hypothermia (TH) for neuroprotection. The circumstances of death in neonates with HIE, including involvement of neonatal palliative care (NPC) specialists and neurodevelopmental follow-up at 18-24 months in survivors, warrant further evaluation. : A retrospective multicenter cohort study including neonates ≥ 35 weeks gestational age with moderate to severe HIE receiving TH, registered in the Swiss National Asphyxia and Cooling Register between 2011 and 2021.

View Article and Find Full Text PDF

Background: The risk of perinatal death and severe neonatal morbidity increases gradually after 41 weeks of pregnancy. We evaluated maternal and perinatal outcomes after a national shift from expectancy and induction at 42+0 weeks to a more active management of late-term pregnancies in Sweden offering induction from 41+0 weeks or an individual plan aiming at birth or active labour no later than 42+0 weeks.

Methods And Findings: Women with a singleton pregnancy lasting 41+0 weeks or more with a fetus in cephalic presentation (N = 150,370) were included in a nationwide, register-based cohort study.

View Article and Find Full Text PDF

Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!