This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ+1kg", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C sugar to boost bioethanol yield and that the use of residual streams in the energy conversion were beneficial for optimizing the system performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.04.087 | DOI Listing |
Water Res
December 2024
The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:
Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.
View Article and Find Full Text PDFMedwave
January 2025
Editor-in-Chief, La Tunisie Médicale.
J Am Chem Soc
January 2025
State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
The performance of nanomaterials is significantly determined by the interfacial microenvironment, in which a surfactant plays an essential role as the adsorbent, but its involvement in the interfacial reaction is often overlooked. Here, it was discovered that citrate and ascorbic acid, the two primarily used surfactants for colloidal gold nanoparticles (Au NPs), can spontaneously undergo catalytic reaction with trace-level nitrogenous residue under ambient environment to form oxime, which is subsequently cleaved to generate CN or a compound containing the -CN group. Such a catalytic reaction shows wide universality in both reactants, including various carbonaceous and nitrogenous sources, and metal catalysts, including Au, Ag, Fe, Cu, Ni, Pt, and Pd NPs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA.
Biopharmaceuticals are the fastest-growing class of drugs in the healthcare industry, but their global reach is severely limited by their propensity for rapid aggregation. Currently, surfactant excipients such as polysorbates and poloxamers are used to prevent protein aggregation, which significantly extends shelf-life. Unfortunately, these excipients are themselves unstable, oxidizing rapidly into 100s of distinct compounds, some of which cause severe adverse events in patients.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
Rapidly detecting hydrogen leaks is critical for the safe large-scale implementation of hydrogen technologies. However, to date, no technically viable sensor solution exists that meets the corresponding response time targets under technically relevant conditions. Here, we demonstrate how a tailored long short-term transformer ensemble model for accelerated sensing (LEMAS) speeds up the response of an optical plasmonic hydrogen sensor by up to a factor of 40 and eliminates its intrinsic pressure dependence in an environment emulating the inert gas encapsulation of large-scale hydrogen installations by accurately predicting its response value to a hydrogen concentration change before it is physically reached by the sensor hardware.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!