22q11.2 deletion syndrome lowers seizure threshold in adult patients without epilepsy.

Epilepsia

Division of Neurology, Department of Medicine, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, Ontario, Canada.

Published: June 2017

Objective: Previous studies examining seizures in patients with 22q11.2 deletion syndrome (22q11.2DS) have focused primarily on children and adolescents. In this study we investigated the prevalence and characteristics of seizures and epilepsy in an adult 22q11.2DS population.

Methods: The medical records of 202 adult patients with 22q11.2DS were retrospectively reviewed for documentation of seizures, electroencephalography (EEG) reports, and magnetic resonance imaging (MRI) findings. Epilepsy status was assigned in accordance with 2010 International League Against Epilepsy Classification.

Results: Of 202 patients, 32 (15.8%) had a documented history of seizure. Of these 32, 23 (71.8%) had acute symptomatic seizures, usually associated with hypocalcemia and/or antipsychotic or antidepressant use. Nine patients (9/32, 28%; 9/202, 4%) met diagnostic criteria for epilepsy. Two patients had genetic generalized epilepsy; two patients had focal seizures of unknown etiology; two had epilepsy due to malformations of cortical development; in two the epilepsy was due to acquired structural changes; and in one patient the epilepsy could not be further classified.

Significance: Similarly to children, the prevalence of epilepsy and acute symptomatic seizures in adults with 22q11.2DS is higher than in the general population. Hypocalcemia continues to be a risk factor for adults, but differently from kids, the main cause of seizures in adults with 22q11.2DS is exposure to antipsychotics and antidepressants. Further prospective studies are warranted to investigate how 22q11.2 microdeletion leads to an overall decreased seizure threshold.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.13748DOI Listing

Publication Analysis

Top Keywords

epilepsy
10
22q112 deletion
8
deletion syndrome
8
seizure threshold
8
adult patients
8
acute symptomatic
8
symptomatic seizures
8
epilepsy patients
8
seizures adults
8
adults 22q112ds
8

Similar Publications

A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions.

View Article and Find Full Text PDF

Transient chaos and periodic structures in a model of neuronal early afterdepolarization.

Chaos

January 2025

Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil.

The presence of chaos is ubiquitous in mathematical models of neuroscience. In experimental neural systems, chaos was convincingly demonstrated in membranes, neurons, and small networks. However, its effects on the brain have long been debated.

View Article and Find Full Text PDF

Epilepsy is the most common chronic neurological condition in children. Many barriers exist in early recognition which cause delay in care and impact quality of life. Some of these children require advanced treatments which are underutilized due to lack of education, awareness and referrals.

View Article and Find Full Text PDF

-related disorder (SRD) is a developmental and epileptic encephalopathy caused by a disruption of the gene. At the beginning of 2024, it is one of many rare monogenic brain disorders without disease-modifying treatments, but that is changing. This article chronicles the last 5 years, beginning when treatments for SRD were not publicly in development, to the start of 2024 when many SRD-specific treatments are advancing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!